Shijie Zhang, Jiying Li, Xiaotian Jin, and Guanglei Wu, Current advances of transition metal dichalcogenides in electromagnetic wave absorption: A brief review, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 428-445. https://doi.org/10.1007/s12613-022-2546-9
Cite this article as:
Shijie Zhang, Jiying Li, Xiaotian Jin, and Guanglei Wu, Current advances of transition metal dichalcogenides in electromagnetic wave absorption: A brief review, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 428-445. https://doi.org/10.1007/s12613-022-2546-9
Invited Review

Current advances of transition metal dichalcogenides in electromagnetic wave absorption: A brief review

+ Author Affiliations
  • Corresponding author:

    Guanglei Wu    E-mail: wuguanglei@qdu.edu.cn

  • Received: 25 June 2022Revised: 2 September 2022Accepted: 5 September 2022Available online: 6 September 2022
  • Transition metal dichalcogenides (TMDs) show great advantages in electromagnetic wave (EMW) absorption due to their unique structure and electrical properties. Tremendous research works on TMD-based EMW absorbers have been conducted in the last three years, and the comprehensive and systematical summary is still a rarity. Therefore, it is of great significance to elaborate on the interaction among the morphologies, structures, phases, components, and EMW absorption performances of TMD-based absorbers. This review is devoted to analyzing TMD-based absorbers from the following perspectives: the EMW absorption regulation strategies of TMDs and the latest progress of TMD-based hybrids as EMW absorbers. The absorption mechanisms and component-performance dependency of these achievements are also summarized. Finally, a straightforward insight into industrial revolution upgrading in this promising field is proposed.
  • loading
  • [1]
    Y.L. Zhang and J.W. Gu, A perspective for developing polymer-based electromagnetic interference shielding composites, Nano-Micro Lett., 14(2022), No. 1, art. No. 89. doi: 10.1007/s40820-022-00843-3
    [2]
    L.G. Ren, Y.Q. Wang, X. Zhang, Q.C. He, and G.L. Wu, Efficient microwave absorption achieved through in situ construction of core–shell CoFe2O4@mesoporous carbon hollow spheres, Int. J. Miner. Metall. Mater., 30(2023), 3, p. 504. doi: 10.1007/s12613-022-2509-1
    [3]
    Z.L. Ma, S.L. Kang, J.Z. Ma, et al., Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding, ACS Nano, 14(2020), No. 7, p. 8368. doi: 10.1021/acsnano.0c02401
    [4]
    Z.L. Ma, X.L. Xiang, L. Shao, Y.L. Zhang, and J.W. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing, Angew. Chem. Int. Ed., 61(2022), No. 15, art. No. e202200705.
    [5]
    Y. Liu, X.F. Zhou, Z.R. Jia, H.J. Wu, and G.L. Wu, Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites, Adv. Funct. Mater., 32(2022), No. 34, art. No. 2204499. doi: 10.1002/adfm.202204499
    [6]
    Z.C. Lou, Q.Y. Wang, W. Sun, et al., Regulating lignin content to obtain excellent bamboo-derived electromagnetic wave absorber with thermal stability, Chem. Eng. J., 430(2022), art. No. 133178. doi: 10.1016/j.cej.2021.133178
    [7]
    X.D. Zhou, H. Han, Y.C. Wang, C. Zhang, H.L. Lv, and Z.C. Lou, Silicon-coated fibrous network of carbon nanotube/iron towards stable and wideband electromagnetic wave absorption, J. Mater. Sci. Technol., 121(2022), p. 199. doi: 10.1016/j.jmst.2022.03.002
    [8]
    Y. Liu, Z. Jia, Q. Zhan, Y. Dong, Q. Xu, and G. Wu, Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption, Nano Res., 15(2022), No. 6, p. 5590. doi: 10.1007/s12274-022-4287-5
    [9]
    S.J. Zhang, Z.R. Jia, B. Cheng, Z.W. Zhao, F. Lu, and G.L. Wu, Recent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: A mini-review, Adv. Compos. Hybrid Mater., 5(2022), No. 3, p. 2440. doi: 10.1007/s42114-022-00458-7
    [10]
    Z.C. Lou, Q.Y. Wang, U.I. Kara, et al., Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers, Nano-Micro Lett., 14(2021), No. 1, art. No. 11.
    [11]
    Z.G. Gao, Y.H. Song, S.J. Zhang, et al., Electromagnetic absorbers with Schottky contacts derived from interfacial ligand exchanging metal-organic frameworks, J. Colloid Interface Sci., 600(2021), p. 288. doi: 10.1016/j.jcis.2021.05.009
    [12]
    J.K. Liu, Z.R. Jia, W.H. Zhou, et al., Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption, Chem. Eng. J., 429(2022), art. No. 132253. doi: 10.1016/j.cej.2021.132253
    [13]
    Z.G. Gao, J.Q. Zhang, S.J. Zhang, J. Wang, and Y.H. Song, Cationic etching of ZIF-67 derived LaCoO3/Co3O4 as high-efficiency electromagnetic absorbents, Chem. Eng. J., 421(2021), art. No. 127829. doi: 10.1016/j.cej.2020.127829
    [14]
    Z.G. Gao, Z.H. Ma, D. Lan, et al., Synergistic polarization loss of MoS2-based multiphase solid solution for electromagnetic wave absorption, Adv. Funct. Mater., 32(2022), No. 18, art. No. 2112294. doi: 10.1002/adfm.202112294
    [15]
    Z.H. Zhao, D. Lan, L.M. Zhang, and H.J. Wu, A flexible, mechanically strong, and anti-corrosion electromagnetic wave absorption composite film with periodic electroconductive patterns, Adv. Funct. Mater., 32(2022), No. 15, art. No. 2111045. doi: 10.1002/adfm.202111045
    [16]
    S.J. Zhang, B. Cheng, Z.G. Gao, et al., Two-dimensional nanomaterials for high-efficiency electromagnetic wave absorption: An overview of recent advances and prospects, J. Alloys Compd., 893(2022), art. No. 162343. doi: 10.1016/j.jallcom.2021.162343
    [17]
    J.L. Liu, Z.H. Zhao, and L.M. Zhang, Toward the application of electromagnetic wave absorption by two-dimension materials, J. Mater. Sci.: Mater. Electron., 32(2021), No. 21, p. 25562. doi: 10.1007/s10854-020-03800-1
    [18]
    H. Zhao, J. Yun, Y.L. Zhang, et al., Pressure-induced self-interlocked structures for expanded graphite composite papers achieving prominent EMI shielding effectiveness and outstanding thermal conductivities, ACS Appl. Mater. Interfaces, 14(2022), No. 2, p. 3233. doi: 10.1021/acsami.1c22950
    [19]
    S.J. Zhang, Z.G. Gao, Q. Jia, et al., Bioinspired strategy for HMX@hBNNS dual shell energetic composites with enhanced desensitization and improved thermal property, Adv. Mater. Interfaces, 7(2020), No. 22, art. No. 2001054. doi: 10.1002/admi.202001054
    [20]
    X.Y. Jin, S.W. Wang, C.Y. Sang, et al., Patternable nanocellulose/Ti3C2Tx flexible films with tunable photoresponsive and electromagnetic interference shielding performances, ACS Appl. Mater. Interfaces, 14(2022), No. 30, p. 35040. doi: 10.1021/acsami.2c11567
    [21]
    S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, and A. Kis, 2D transition metal dichalcogenides, Nat. Rev. Mater., 2(2017), art. No. 17033. doi: 10.1038/natrevmats.2017.33
    [22]
    Q. Fu, J.C. Han, X.J. Wang, et al., Electrocatalysts: 2D transition metal dichalcogenides: Design, modulation, and challenges in electrocatalysis, Adv. Mater., 33(2021), No. 6, art. No. 2170045. doi: 10.1002/adma.202170045
    [23]
    Y. Zhou and L.D. Zhao, Promising thermoelectric bulk materials with 2D structures, Adv. Mater., 29(2017), No. 45, art. No. 1702676. doi: 10.1002/adma.201702676
    [24]
    C.Y. Yan, C.H. Gong, P.H. Wang, et al., 2D group IVB transition metal dichalcogenides, Adv. Funct. Mater., 28(2018), No. 39, art. No. 1803305. doi: 10.1002/adfm.201803305
    [25]
    Z.Z. Zhao, W.H. Liu, Y.W. Jiang, Y.F. Wan, R.H. Du, and H. Li, Solidification of heavy metals in lead smelting slag and development of cementitious materials, J. Clean. Prod., 359(2022), art. No. 132134. doi: 10.1016/j.jclepro.2022.132134
    [26]
    F. Zhang, Z.R. Jia, J.X. Zhou, J.K. Liu, G.L. Wu, and P.F. Yin, Metal-organic framework-derived carbon nanotubes for broadband electromagnetic wave absorption, Chem. Eng. J., 450(2022), art. No. 138205. doi: 10.1016/j.cej.2022.138205
    [27]
    D. Voiry, A. Mohite, and M. Chhowalla, Phase engineering of transition metal dichalcogenides, Chem. Soc. Rev., 44(2015), No. 9, p. 2702. doi: 10.1039/C5CS00151J
    [28]
    X. Yin, C.S. Tang, Y. Zheng, et al., Recent developments in 2D transition metal dichalcogenides: Phase transition and applications of the (quasi-) metallic phases, Chem. Soc. Rev., 50(2021), No. 18, p. 10087. doi: 10.1039/D1CS00236H
    [29]
    Z.H. Hu, Z.T. Wu, C. Han, J. He, Z.H. Ni, and W. Chen, Two-dimensional transition metal dichalcogenides: Interface and defect engineering, Chem. Soc. Rev., 47(2018), No. 9, p. 3100. doi: 10.1039/C8CS00024G
    [30]
    Z.M. Wei, B. Li, C.X. Xia, et al., Various structures of 2D transition-metal dichalcogenides and their applications, Small Methods, 2(2018), No. 11, art. No. 1800094. doi: 10.1002/smtd.201800094
    [31]
    J. Wang, X.Y. Lin, R.X. Zhang, Z.Y. Chu, and Z.Y. Huang, Transition metal dichalcogenides MX2 (M = Mo, W; X = S, Se, Te) and MX2-CIP composites: Promising materials with high microwave absorption performance, J. Alloys Compd., 743(2018), p. 26. doi: 10.1016/j.jallcom.2018.01.118
    [32]
    M. Chang, Z.R. Jia, S.Q. He, et al., Two-dimensional interface engineering of NiS/MoS2/Ti3C2Tx heterostructures for promoting electromagnetic wave absorption capability, Composites Part B, 225(2021), art. No. 109306. doi: 10.1016/j.compositesb.2021.109306
    [33]
    J. Yan, Y. Huang, X.Y. Zhang, et al., MoS2-decorated/integrated carbon fiber: Phase engineering well-regulated microwave absorber, Nano-Micro Lett., 13(2021), No. 1, art. No. 114. doi: 10.1007/s40820-021-00646-y
    [34]
    M.H. Li, W.J. Zhu, X. Li, et al., Ti3C2Tx/MoS2 self-rolling rod-based foam boosts interfacial polarization for electromagnetic wave absorption, Adv. Sci., 9(2022), No. 16, art. No. 2201118. doi: 10.1002/advs.202201118
    [35]
    K. Yang, Y.H. Cui, Z.H. Liu, P. Liu, Q.Y. Zhang, and B.L. Zhang, Design of core–shell structure NC@MoS2 hierarchical nanotubes as high-performance electromagnetic wave absorber, Chem. Eng. J., 426(2021), art. No. 131308. doi: 10.1016/j.cej.2021.131308
    [36]
    M. Qin, L.M. Zhang, and H.J. Wu, Dielectric loss mechanism in electromagnetic wave absorbing materials, Adv. Sci., 9(2022), No. 10, art. No. e2105553. doi: 10.1002/advs.202105553
    [37]
    J. Li, D. Zhou, P.J. Wang, et al., Recent progress in two-dimensional materials for microwave absorption applications, Chem. Eng. J., 425(2021), art. No. 131558. doi: 10.1016/j.cej.2021.131558
    [38]
    M.S. Cao, J.C. Shu, X.X. Wang, et al., Electronic structure and electromagnetic properties for 2D electromagnetic functional materials in gigahertz frequency, Ann. Phys., 531(2019), No. 4, art. No. 1800390. doi: 10.1002/andp.201800390
    [39]
    J. Zhang, J.C. Zhang, X.F. Shuai, et al., Design and synthesis strategies: 2D materials for electromagnetic shielding/absorbing, Chem. Asian J., 16(2021), No. 23, p. 3817. doi: 10.1002/asia.202100979
    [40]
    H. Lv, Z. Yang, B. Liu, et al., A flexible electromagnetic wave-electricity harvester, Nat. Commun., 12(2021), art. No. 834. doi: 10.1038/s41467-021-21103-9
    [41]
    T.Q. Hou, Z.R. Jia, A.L. Feng, et al., Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity, J. Mater. Sci. Technol., 68(2021), p. 61. doi: 10.1016/j.jmst.2020.06.046
    [42]
    T.Q. Hou, Z.R. Jia, Y.H. Dong, X.H. Liu, and G.L. Wu, Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption, Chem. Eng. J., 431(2022), art. No. 133919. doi: 10.1016/j.cej.2021.133919
    [43]
    T.Q. Hou, Z.R. Jia, B.B. Wang, et al., MXene-based accordion 2D hybrid structure with Co9S8/C/Ti3C2Tx as efficient electromagnetic wave absorber, Chem. Eng. J., 414(2021), art. No. 128875. doi: 10.1016/j.cej.2021.128875
    [44]
    Z.G. Gao, D. Lan, L.M. Zhang, and H.J. Wu, Simultaneous manipulation of interfacial and defects polarization toward Zn/Co phase and ion hybrids for electromagnetic wave absorption, Adv. Funct. Mater., 31(2021), No. 50, art. No. 2106677. doi: 10.1002/adfm.202106677
    [45]
    X.L. Chen, Y. Wang, H.L. Liu, S. Jin, and G.L. Wu, Interconnected magnetic carbon@NixCo1–xFe2O4 nanospheres with core–shell structure: An efficient and thin electromagnetic wave absorber, J. Colloid Interface Sci., 606(2022), p. 526. doi: 10.1016/j.jcis.2021.07.094
    [46]
    P.F. Yin, G.L. Wu, Y.T. Tang, et al., Structure regulation in N-doping biconical carbon frame decorated with CoFe2O4 and (Fe, Ni) for broadband microwave absorption, Chem. Eng. J., 446(2022), art. No. 136975. doi: 10.1016/j.cej.2022.136975
    [47]
    X. Wang, F. Pan, Z. Xiang, et al., Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance, Carbon, 157(2020), p. 130. doi: 10.1016/j.carbon.2019.10.030
    [48]
    H.L. Lv, X.D. Zhou, G.L. Wu, U.I. Kara, and X.G. Wang, Engineering defects in 2D g-C3N4 for wideband, efficient electromagnetic absorption at elevated temperature, J. Mater. Chem. A, 9(2021), No. 35, p. 19710. doi: 10.1039/D1TA02785A
    [49]
    Y. Zhou, H.P. Wang, D. Wang, et al., Insight to the enhanced microwave absorption of porous N-doped carbon driven by ZIF-8: Competition between graphitization and porosity, Int. J. Miner. Metall. Mater., 30(2023), 3, p. 474. doi: 10.1007/s12613-022-2499-z
    [50]
    Y.F. Zhang, Y.L. Li, M.M. Wei, D.T. Yang, Q.Y. Zhang, and B.L. Zhang, Core–shell structured Co@NC@MoS2 magnetic hierarchical nanotubes: Preparation and microwave absorbing properties, J. Mater. Sci. Technol., 128(2022), p. 148. doi: 10.1016/j.jmst.2022.04.026
    [51]
    Y. Liu, X.H. Liu, X.Y. E, et al., Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption, J. Mater. Sci. Technol., 103(2022), p. 157. doi: 10.1016/j.jmst.2021.06.034
    [52]
    Z.R. Jia, M.Y. Kong, B.W. Yu, Y.Z. Ma, J.Y. Pan, and G.L. Wu, Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties, J. Mater. Sci. Technol., 127(2022), p. 153. doi: 10.1016/j.jmst.2022.04.005
    [53]
    Y.M. Luo, P.F. Yin, G.L. Wu, et al., Porous carbon sphere decorated with Co/Ni nanoparticles for strong and broadband electromagnetic dissipation, Carbon, 197(2022), p. 389. doi: 10.1016/j.carbon.2022.06.084
    [54]
    Z.C. Lou, Q.Y. Wang, X.D. Zhou, et al., An angle-insensitive electromagnetic absorber enabling a wideband absorption, J. Mater. Sci. Technol., 113(2022), p. 33. doi: 10.1016/j.jmst.2021.11.007
    [55]
    L.L. Xu, J.Q. Tao, X.F. Zhang, et al., Hollow C@MoS2 nanospheres for microwave absorption, ACS Appl. Nano Mater., 4(2021), No. 10, p. 11199. doi: 10.1021/acsanm.1c02715
    [56]
    X.R. Gao, Z.R. Jia, B.B. Wang, et al., Synthesis of NiCo-LDH/MXene hybrids with abundant heterojunction surfaces as a lightweight electromagnetic wave absorber, Chem. Eng. J., 419(2021), art. No. 130019. doi: 10.1016/j.cej.2021.130019
    [57]
    S.J. Zhang, Y.X. Pei, Z.Z. Zhao, C.L. Guan, and G.L. Wu, Simultaneous manipulation of polarization relaxation and conductivity toward self-repairing reduced graphene oxide based ternary hybrids for efficient electromagnetic wave absorption, J. Colloid Interface Sci., 630(2023), p. 453. doi: 10.1016/j.jcis.2022.09.149
    [58]
    X.L. Cao, Z.R. Jia, D.Q. Hu, and G.L. Wu, Synergistic construction of three-dimensional conductive network and double heterointerface polarization via magnetic FeNi for broadband microwave absorption, Adv. Compos. Hybrid Mater., 5(2022), No. 2, p. 1030. doi: 10.1007/s42114-021-00415-w
    [59]
    X.Y. Zhang, Z.R. Jia, F. Zhang, et al., MOF-derived NiFe2S4/Porous carbon composites as electromagnetic wave absorber, J. Colloid Interface Sci., 610(2022), p. 610. doi: 10.1016/j.jcis.2021.11.110
    [60]
    J. Wang, Z. Jia, X. Liu, et al., Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption, Nano-Micro Lett, 13(2021), No. 1, art. No. 175. doi: 10.1007/s40820-021-00704-5
    [61]
    Y. He, Y. Wang, L. Ren, et al., Construction of heterointerfaces and honeycomb-like structure for ultrabroad microwave absorption, J. Colloid Interface Sci., 627(2022), p. 102. doi: 10.1016/j.jcis.2022.07.047
    [62]
    Y.Q. Guo, H. Qiu, K.P. Ruan, S.S. Wang, Y.L. Zhang, and J.W. Gu, Flexible and insulating silicone rubber composites with sandwich structure for thermal management and electromagnetic interference shielding, Compos. Sci. Technol., 219(2022), art. No. 109253. doi: 10.1016/j.compscitech.2021.109253
    [63]
    T.T. Zheng, Z.R. Jia, Q.Q. Zhan, et al., Self-assembled multi-layered hexagonal-like MWCNTs/MnF2/CoO nanocomposite with enhanced electromagnetic wave absorption, Carbon, 186(2022), p. 262. doi: 10.1016/j.carbon.2021.10.025
    [64]
    F. Zhang, Z.R. Jia, Z. Wang, et al., Tailoring nanoparticles composites derived from metal-organic framework as electromagnetic wave absorber, Mater. Today Phys., 20(2021), art. No. 100475. doi: 10.1016/j.mtphys.2021.100475
    [65]
    C.X. Wang, Z.R. Jia, S.Q. He, et al., Metal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuation, J. Mater. Sci. Technol., 108(2022), p. 236. doi: 10.1016/j.jmst.2021.07.049
    [66]
    L.F. Sun, Z.R. Jia, S. Xu, et al., Synthesis of NiCo2–0.5xCr2O3@C nanoparticles based on hydroxide with the heterogeneous interface for excellent electromagnetic wave absorption properties, Compos. Commun., 29(2022), art. No. 100993. doi: 10.1016/j.coco.2021.100993
    [67]
    Y.T. Zhou, Z.Y. Bai, X.Y. Yang, et al., In-situ grown of NiCo bimetal anchored on porous straw-derived biochar composites with boosted microwave absorption properties, Int. J. Miner. Metall. Mater., 30(2023), 3, p. 515. doi: 10.1007/s12613-022-2496-2
    [68]
    Y. Liu, J.G. Qin, L.L. Lu, J. Xu, and X.L. Su, Enhanced microwave absorption property of silver decorated biomass ordered porous carbon composite materials with frequency selective surface incorporation, Int. J. Miner. Metall. Mater., 30(2023), 3, p. 525. doi: 10.1007/s12613-022-2491-7
    [69]
    Z.H. Zhao, X.J. Zhou, K.C. Kou, and H.J. Wu, PVP-assisted transformation of ZIF-67 into cobalt layered double hydroxide/carbon fiber as electromagnetic wave absorber, Carbon, 173(2021), p. 80. doi: 10.1016/j.carbon.2020.11.009
    [70]
    Z.H. Zhao, K.C. Kou, L.M. Zhang, and H.J. Wu, Optimal particle distribution induced interfacial polarization in bouquet-like hierarchical composites for electromagnetic wave absorption, Carbon, 186(2022), p. 323. doi: 10.1016/j.carbon.2021.10.052
    [71]
    H.X. Zhang, Z.R. Jia, B.B. Wang, et al., Construction of remarkable electromagnetic wave absorber from heterogeneous structure of Co-CoFe2O4@mesoporous hollow carbon spheres, Chem. Eng. J., 421(2021), art. No. 129960. doi: 10.1016/j.cej.2021.129960
    [72]
    H.X. Zhang, Z.R. Jia, A.L. Feng, et al., In situ deposition of pitaya-like Fe3O4@C magnetic microspheres on reduced graphene oxide nanosheets for electromagnetic wave absorber, Composites Part B, 199(2020), art. No. 108261. doi: 10.1016/j.compositesb.2020.108261
    [73]
    X. Feng, P.F. Yin, L.M. Zhang, et al., Innovative preparation of Co@CuFe2O4 composite via ball-milling assisted chemical precipitation and annealing for glorious electromagnetic-wave absorption, Int. J. Miner. Metall. Mater., 30(2023), 3, p. 559. doi: 10.1007/s12613-022-2488-2
    [74]
    L. Chai, Y.Q. Wang, Z.R. Jia, et al., Tunable defects and interfaces of hierarchical dandelion-like NiCo2O4 via Ostwald ripening process for high-efficiency electromagnetic wave absorption, Chem. Eng. J., 429(2022), art. No. 132547. doi: 10.1016/j.cej.2021.132547
    [75]
    Z.X. Liu, Y.Q. Wang, Z.R. Jia, et al., In situ constructed honeycomb-like NiFe2O4@Ni@C composites as efficient electromagnetic wave absorber, J. Colloid Interface Sci., 608(2022), p. 2849. doi: 10.1016/j.jcis.2021.11.012
    [76]
    C.H. Sun, Z.R. Jia, S. Xu, D.Q. Hu, C.H. Zhang, and G.L. Wu, Synergistic regulation of dielectric-magnetic dual-loss and triple heterointerface polarization via magnetic MXene for high-performance electromagnetic wave absorption, J. Mater. Sci. Technol., 113(2022), p. 128. doi: 10.1016/j.jmst.2021.11.006
    [77]
    L. Chai, Y.Q. Wang, N.F. Zhou, et al., In-situ growth of core-shell ZnFe2O4@ porous hollow carbon microspheres as an efficient microwave absorber, J. Colloid Interface Sci., 581(2021), p. 475. doi: 10.1016/j.jcis.2020.07.102
    [78]
    L. Kong, S.H. Luo, S.Y. Zhang, G.Q. Zhang, Y. Zhang, Ultralight pyrolytic carbon foam reinforced with amorphous carbon nanotubes for broadband electromagnetic absorption, Int. J. Miner. Metall. Mater., 30(2023), 3, p. 570. doi: 10.1007/s12613-022-2476-6
    [79]
    L.G. Ren, Y.Q. Wang, Z.R. Jia, Q.C. He, and G.L. Wu, Controlling the heterogeneous interfaces of Fe3O4/N-doped porous carbon via facile swelling for enhancing the electromagnetic wave absorption, Compos. Commun., 29(2022), art. No. 101052. doi: 10.1016/j.coco.2021.101052
    [80]
    X.M. Huang, X.H. Liu, Z.R. Jia, B.B. Wang, X.M. Wu, and G.L. Wu, Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance, Adv. Compos. Hybrid Mater., 4(2021), No. 4, p. 1398. doi: 10.1007/s42114-021-00304-2
    [81]
    Z.G. Gao, Z.H. Zhao, D. Lan, K.C. Kou, J.Q. Zhang, and H.J. Wu, Accessory ligand strategies for hexacyanometallate networks deriving perovskite polycrystalline electromagnetic absorbents, J. Mater. Sci. Technol., 82(2021), p. 69. doi: 10.1016/j.jmst.2020.11.071
    [82]
    H.R. Geng, X. Zhang, W.H. Xie, et al., Lightweight and broadband 2D MoS2 nanosheets/3D carbon nanofibers hybrid aerogel for high-efficiency microwave absorption, J. Colloid Interface Sci., 609(2022), p. 33. doi: 10.1016/j.jcis.2021.11.192
    [83]
    X. Sun, Y.H. Pu, F. Wu, et al., 0D–1D–2D multidimensionally assembled Co9S8/CNTs/MoS2 composites for ultralight and broadband electromagnetic wave absorption, Chem. Eng. J., 423(2021), art. No. 130132. doi: 10.1016/j.cej.2021.130132
    [84]
    W. Ding, L. Hu, Q.C. Liu, et al., Structure modulation induced enhancement of microwave absorption in WS2 nanosheets, Appl. Phys. Lett., 113(2018), No. 24, art. No. 243102. doi: 10.1063/1.5054636
    [85]
    M.Q. Ning, P.H. Jiang, W. Ding, et al., Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz, Adv. Funct. Mater., 31(2021), No. 19, art. No. 2011229. doi: 10.1002/adfm.202011229
    [86]
    H.B. Zhang, J.Y. Cheng, H.H. Wang, et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation, Adv. Funct. Mater., 32(2022), No. 6, art. No. 2108194. doi: 10.1002/adfm.202108194
    [87]
    Y.C. Cheng, Z.Y. Zhu, W.B. Mi, Z.B. Guo, and U. Schwingenschlögl, Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems, Phys. Rev. B, 87(2013), No. 10, art. No. 100401. doi: 10.1103/PhysRevB.87.100401
    [88]
    J. Wang, X.Y. Lin, Z.Y. Chu, et al., Magnetic MoS2: A promising microwave absorption material with both dielectric loss and magnetic loss properties, Nanotechnology, 31(2020), No. 13, art. No. 135602. doi: 10.1088/1361-6528/ab5de7
    [89]
    L.L. Liang, W.H. Gu, Y. Wu, et al., Heterointerface engineering in electromagnetic absorbers: New insights and opportunities, Adv. Mater., 34(2022), No. 4, art. No. e2106195. doi: 10.1002/adma.202106195
    [90]
    Z. Feng, P.P. Yang, G.S. Wen, H.B. Li, Y. Liu, and X.C. Zhao, One-step synthesis of MoS2 nanoparticles with different morphologies for electromagnetic wave absorption, Appl. Surf. Sci., 502(2020), art. No. 144129. doi: 10.1016/j.apsusc.2019.144129
    [91]
    Y. Xia, W.F. Zhu, Q. Zhu, et al., Investigation on the critical factors of MoSe2-based microwave absorbing property, J. Mater. Sci.: Mater. Electron., 32(2021), No. 21, p. 25795. doi: 10.1007/s10854-020-04737-1
    [92]
    Y. Cheng, Y. Zhao, H.Q. Zhao, et al., Engineering morphology configurations of hierarchical flower-like MoSe2 spheres enable excellent low-frequency and selective microwave response properties, Chem. Eng. J., 372(2019), p. 390. doi: 10.1016/j.cej.2019.04.174
    [93]
    M. Wu, Y. Zheng, X.H. Liang, et al., MoS2 nanostructures with the 1T phase for electromagnetic wave absorption, ACS Appl. Nano Mater., 4(2021), No. 10, p. 11042. doi: 10.1021/acsanm.1c02488
    [94]
    L.S. Xing, X. Li, Z.C. Wu, et al., 3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption, Chem. Eng. J., 379(2020), art. No. 122241. doi: 10.1016/j.cej.2019.122241
    [95]
    J.J. Zhang, X.S. Qi, X. Gong, et al., Microstructure optimization of core@shell structured MSe2/FeSe2@MoSe2 (M = Co, Ni) flower-like multicomponent nanocomposites towards high-efficiency microwave absorption, J. Mater. Sci. Technol., 128(2022), p. 59. doi: 10.1016/j.jmst.2022.04.017
    [96]
    J.J. Zhang, Z.H. Li, X.S. Qi, et al., Constructing flower-like core@shell MoSe2-based nanocomposites as a novel and high-efficient microwave absorber, Composites Part B, 222(2021), art. No. 109067. doi: 10.1016/j.compositesb.2021.109067
    [97]
    A.K. Darboe, X.S. Qi, X. Gong, et al., Constructing MoSe2/MoS2 and MoS2/MoSe2 inner and outer-interchangeable flower-like heterojunctions: A combined strategy of interface polarization and morphology configuration to optimize microwave absorption performance, J. Colloid Interface Sci., 624(2022), p. 204. doi: 10.1016/j.jcis.2022.05.078
    [98]
    S.J. Zhang, B. Cheng, Z.R. Jia, et al., The art of framework construction: Hollow-structured materials toward high-efficiency electromagnetic wave absorption, Adv. Compos. Hybrid Mater., 5(2022), No. 3, p. 1658. doi: 10.1007/s42114-022-00514-2
    [99]
    D.Q. Zhang, Y.F. Xiong, J.Y. Cheng, et al., Construction of low-frequency and high-efficiency electromagnetic wave absorber enabled by texturing rod-like TiO2 on few-layer of WS2 nanosheets, Appl. Surf. Sci., 548(2021), art. No. 149158. doi: 10.1016/j.apsusc.2021.149158
    [100]
    H. Chen, J. Shen, and Y.H. Zhang, Preparation and microwave absorption characteristics of MoS2/Nd2O2CO3 composites, J. Mater. Sci.: Mater. Electron., 33(2022), No. 8, p. 4902. doi: 10.1007/s10854-021-07679-4
    [101]
    J.H. Luo, K. Zhang, M.L. Cheng, M.M. Gu, and X.K. Sun, MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption, Chem. Eng. J., 380(2020), art. No. 122625. doi: 10.1016/j.cej.2019.122625
    [102]
    P. Song, B. Liu, C.B. Liang, et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities, Nano-Micro Lett., 13(2021), No. 1, art. No. 91. doi: 10.1007/s40820-021-00624-4
    [103]
    Y.H. Song, X.H. Liu, Z.G. Gao, et al., Core–shell Ag@C spheres derived from Ag-MOFs with tunable ligand exchanging phase inversion for electromagnetic wave absorption, J. Colloid Interface Sci., 620(2022), p. 263. doi: 10.1016/j.jcis.2022.04.012
    [104]
    J.H. Luo, M.N. Feng, Z.Y. Dai, C.Y. Jiang, W. Yao, and N.X. Zhai, MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption, Nano Res., 15(2022), No. 7, p. 5781. doi: 10.1007/s12274-022-4411-6
    [105]
    C.X. Hou, J.Y. Cheng, H.B. Zhang, et al., Biomass-derived carbon-coated WS2 core-shell nanostructures with excellent electromagnetic absorption in C-band, Appl. Surf. Sci., 577(2022), art. No. 151939. doi: 10.1016/j.apsusc.2021.151939
    [106]
    W.D. Zhang, X. Zhang, Q. Zhu, Y. Zheng, L.F. Liotta, and H.J. Wu, High-efficiency and wide-bandwidth microwave absorbers based on MoS2-coated carbon fiber, J. Colloid Interface Sci., 586(2021), p. 457. doi: 10.1016/j.jcis.2020.10.109
    [107]
    L.F. Lyu, F.L. Wang, B. Li, et al., Constructing 1T/2H MoS2 nanosheets/3D carbon foam for high-performance electromagnetic wave absorption, J. Colloid Interface Sci., 586(2021), p. 613. doi: 10.1016/j.jcis.2020.10.129
    [108]
    F. Pan, Z. Liu, B. Deng, et al., Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance, Nano-Micro Lett, 13(2021), No. 1, art. No. 43. doi: 10.1007/s40820-020-00568-1
    [109]
    Z.J. Xu, M. He, Y.M. Zhou, et al., Spider web-like carbonized bacterial cellulose/MoSe2 nanocomposite with enhanced microwave attenuation performance and tunable absorption bands, Nano Res., 14(2021), No. 3, p. 738. doi: 10.1007/s12274-020-3107-z
    [110]
    D.Q. Zhang, T.T. Liu, J.Y. Cheng, et al., Lightweight and high-performance microwave absorber based on 2D WS2-RGO heterostructures, Nano-Micro Lett., 11(2019), No. 1, art. No. 38. doi: 10.1007/s40820-019-0270-4
    [111]
    D.Q. Zhang, H.H. Wang, J.Y. Cheng, et al., Conductive WS2-NS/CNTs hybrids based 3D ultra-thin mesh electromagnetic wave absorbers with excellent absorption performance, Appl. Surf. Sci., 528(2020), art. No. 147052. doi: 10.1016/j.apsusc.2020.147052
    [112]
    Y.H. Han, J. Yuan, Y.H. Zhu, Q.Q. Wang, L. Li, and M.S. Cao, Implantation of WSe2 nanosheets into multi-walled carbon nanotubes for enhanced microwave absorption, J. Colloid Interface Sci., 609(2022), p. 746. doi: 10.1016/j.jcis.2021.11.079
    [113]
    Y.H. Zhu, Q.Q. Wang, Y.H. Han, L. Li, and M.S. Cao, Constructing WSe2@CNTs heterojunction to tune attenuation capability for efficient microwave absorbing and green EMI shielding, Appl. Surf. Sci., 592(2022), art. No. 153253. doi: 10.1016/j.apsusc.2022.153253
    [114]
    R. Wang, E.Q. Yang, X.S. Qi, et al., Constructing and optimizing core@shell structure CNTs@MoS2 nanocomposites as outstanding microwave absorbers, Appl. Surf. Sci., 516(2020), art. No. 146159. doi: 10.1016/j.apsusc.2020.146159
    [115]
    J. Xu, L.N. Liu, X.C. Zhang, et al., Tailoring electronic properties and polarization relaxation behavior of MoS2 monolayers for electromagnetic energy dissipation and wireless pressure micro-sensor, Chem. Eng. J., 425(2021), art. No. 131700. doi: 10.1016/j.cej.2021.131700
    [116]
    W.L. Zhang, D.G. Jiang, X.X. Wang, B.N. Hao, Y. Liu, and J.Q. Liu, Growth of polyaniline nanoneedles on MoS2 nanosheets, tunable electroresponse, and electromagnetic wave attenuation analysis, J. Phys. Chem. C, 121(2017), p. 4989. doi: 10.1021/acs.jpcc.6b11656
    [117]
    X.L. Wang, C.J. Li, H.R. Geng, et al., Tunable dielectric properties and electromagnetic wave absorbing performance of MoS2/Fe3O4/PANI composite, Colloids Surface A, 637(2022), art. No. 128285. doi: 10.1016/j.colsurfa.2022.128285
    [118]
    J.L. Ma, H.D. Ren, Z.Y. Liu, et al., Embedded MoS2–PANI nanocomposites with advanced microwave absorption performance, Compos. Sci. Technol., 198(2020), art. No. 108239. doi: 10.1016/j.compscitech.2020.108239
    [119]
    Q. Su, B.C. Wang, C.P. Mu, et al., Polypyrrole coated 3D flower MoS2 composites with tunable impedance for excellent microwave absorption performance, J. Alloys Compd., 888(2021), art. No. 161487. doi: 10.1016/j.jallcom.2021.161487
    [120]
    L.X. Gai, Y.M. Zhao, G.L. Song, et al., Construction of core-shell PPy@MoS2 with nanotube-like heterostructures for electromagnetic wave absorption: Assembly and enhanced mechanism, Composites Part A, 136(2020), art. No. 105965. doi: 10.1016/j.compositesa.2020.105965
    [121]
    Y.L. Zhang, Y. Yan, H. Qiu, Z.L. Ma, K.P. Ruan, and J.W. Gu, A mini-review of MXene porous films: Preparation, mechanism and application, J. Mater. Sci. Technol., 103(2022), p. 42. doi: 10.1016/j.jmst.2021.08.001
    [122]
    P. Song, B. Liu, H. Qiu, X.T. Shi, D.P. Cao, and J.W. Gu, MXenes for polymer matrix electromagnetic interference shielding composites: A review, Compos. Commun., 24(2021), art. No. 100653. doi: 10.1016/j.coco.2021.100653
    [123]
    Q.Q. Chen, S. Bao, F.C. Wei, et al., Promoting the electromagnetic interference shielding of Ti3C2Tx flakes by loading Fe3O4 nanoparticles: Insights into the performance of oligo-layers exposed to microwave interferences, Ceram. Int., 48(2022), No. 17, p. 24656. doi: 10.1016/j.ceramint.2022.05.111
    [124]
    P. He, M.J. Zheng, Q. Liu, et al., MXene nanohybrids: Excellent electromagnetic properties for absorbing electromagnetic waves, Ceram. Int., 48(2022), No. 2, p. 1484. doi: 10.1016/j.ceramint.2021.10.049
    [125]
    A. Hassan, M.A. Aslam, M. Bilal, et al., Modulating dielectric loss of MoS2@Ti3C2Tx nanoarchitectures for electromagnetic wave absorption with radar cross section reduction performance verified through simulations, Ceram. Int., 47(2021), No. 14, p. 20706. doi: 10.1016/j.ceramint.2021.04.014
    [126]
    Z.H. Liu, Y.H. Cui, Q. Li, Q.Y. Zhang, and B.L. Zhang, Fabrication of folded MXene/MoS2 composite microspheres with optimal composition and their microwave absorbing properties, J. Colloid Interface Sci., 607(2022), p. 633. doi: 10.1016/j.jcis.2021.09.009
    [127]
    X. Li, C.Y. Wen, L.T. Yang, R.X. Zhang, Y.S. Li, and R.C. Che, Enhanced visualizing charge distribution of 2D/2D MXene/MoS2 heterostructure for excellent microwave absorption performance, J. Alloys Compd., 869(2021), art. No. 159365. doi: 10.1016/j.jallcom.2021.159365
    [128]
    H.D. Ren, S. Wang, X.M. Zhang, et al., Broadband electromagnetic absorption of Ti3C2Tx MXene/WS2 composite via constructing two-dimensional heterostructure, J. Am. Ceram. Soc., 104(2021), No. 11, p. 5537. doi: 10.1111/jace.17959
    [129]
    J. Yang, J. Wang, H. Li, et al., MoS2/MXene aerogel with conformal heterogeneous interfaces tailored by atomic layer deposition for tunable microwave absorption, Adv. Sci., 9(2022), No. 7, art. No. e2101988. doi: 10.1002/advs.202101988
    [130]
    J.X. Chai, J.Y. Cheng, D.Q. Zhang, et al., Enhancing electromagnetic wave absorption performance of Co3O4 nanoparticles functionalized MoS2 nanosheets, J. Alloys Compd., 829(2020), art. No. 154531. doi: 10.1016/j.jallcom.2020.154531
    [131]
    D.Q. Zhang, Y.F. Xiong, J.Y. Cheng, et al., Synergetic dielectric loss and magnetic loss towards superior microwave absorption through hybridization of few-layer WS2 nanosheets with NiO nanoparticles, Sci. Bull., 65(2020), No. 2, p. 138. doi: 10.1016/j.scib.2019.10.011
    [132]
    H.M. Liu, M. Zhang, Y.F. Ye, J.L. Yi, Y.X. Zhang, and Q.C. Liu, Porous cobalt ferrite microspheres decorated two-dimensional MoS2 as an efficient and wideband microwave absorber, J. Alloys Compd., 892(2022), art. No. 162126. doi: 10.1016/j.jallcom.2021.162126
    [133]
    M. Wu, X.H. Liang, Y. Zheng, C.Y. Qian, and D.H. Wang, Excellent microwave absorption performances achieved by optimizing core@shell structures of Fe3O4@1T/2H-MoS2 composites, J. Alloys Compd., 910(2022), art. No. 164881. doi: 10.1016/j.jallcom.2022.164881
    [134]
    M. Ma, Q. Zheng, Y.H. Zhu, L. Li, and M.S. Cao, Confinedly implanting Fe3O4 nanoclusters on MoS2 nanosheets to tailor electromagnetic properties for excellent multi-bands microwave absorption, J. Materiomics, 8(2022), No. 3, p. 577. doi: 10.1016/j.jmat.2021.12.003
    [135]
    F. Hu, J.X. Dai, Q. Liu, Z.Q. Zhang, and G.L. Xu, Synthesis of flowerlike MoS2/CoNi composites for enhancing electromagnetic wave absorption, Acta Metall. Sin., 35(2022), No. 6, p. 890. doi: 10.1007/s40195-021-01334-x
    [136]
    M.Q. Wang, Y. Lin, H.B. Yang, Y. Qiu, and S. Wang, A novel plate-like BaFe12O19@MoS2 core–shell structure composite with excellent microwave absorbing properties, J. Alloys Compd., 817(2020), art. No. 153265. doi: 10.1016/j.jallcom.2019.153265
    [137]
    Y. Wang, X.C. Di, Y.Q. Fu, X.M. Wu, and J.T. Cao, Facile synthesis of the three-dimensional flower-like ZnFe2O4@MoS2 composite with heterogeneous interfaces as a high-efficiency absorber, J. Colloid Interface Sci., 587(2021), p. 561. doi: 10.1016/j.jcis.2020.11.013
    [138]
    X.Y. Wang, T. Zhu, S.C. Chang, Y.K. Lu, W.B. Mi, and W. Wang, 3D Nest-like architecture of core–shell CoFe2O4@1T/2H-MoS2 composites with tunable microwave absorption performance, ACS Appl. Mater. Interfaces, 12(2020), No. 9, p. 11252. doi: 10.1021/acsami.9b23489
    [139]
    C.L. Li, M.X. Piao, H. Zhang, and X. Wang, Constructing of Co nanosheets decorating with WS2 nanoclusters for enhanced electromagnetic wave absorption, J. Alloys Compd., 912(2022), art. No. 165269. doi: 10.1016/j.jallcom.2022.165269
    [140]
    Y.X. Bi, M.L. Ma, Y.Y. Liu, et al., Microwave absorption enhancement of 2-dimensional CoZn/C@MoS2@PPy composites derived from metal-organic framework, J. Colloid Interface Sci., 600(2021), p. 209. doi: 10.1016/j.jcis.2021.04.137
    [141]
    Z.J. Liao, M.L. Ma, Y.X. Bi, et al., MoS2 decorated on one-dimensional MgFe2O4/MgO/C composites for high-performance microwave absorption, J. Colloid Interface Sci., 606(2022), p. 709. doi: 10.1016/j.jcis.2021.08.056
    [142]
    Z.J. Liao, M.L. Ma, Z.Y. Tong, et al., Fabrication of one-dimensional ZnFe2O4@carbon@MoS2/FeS2 composites as electromagnetic wave absorber, J. Colloid Interface Sci., 600(2021), p. 90. doi: 10.1016/j.jcis.2021.04.142
    [143]
    W.B. Huang, Z.Y. Tong, Y.X. Bi, et al., Synthesis and microwave absorption properties of coralloid core–shell structure NiS/Ni3S4@PPy@MoS2 nanowires, J. Colloid Interface Sci., 599(2021), p. 262. doi: 10.1016/j.jcis.2021.04.107
    [144]
    Z.H. Qin, C.Y. Wang, Y.Y. Ma, et al., MoS2 nanoflowers decorated with Fe3O4/graphite nanosheets for controllable electromagnetic wave absorption, ACS Appl. Nano Mater., 4(2021), No. 4, p. 3434. doi: 10.1021/acsanm.0c03328
    [145]
    X.L. Chen, T. Shi, G.L. Wu, and Y. Lu, Design of molybdenum disulfide@polypyrrole compsite decorated with Fe3O4 and superior electromagnetic wave absorption performance, J. Colloid Interface Sci., 572(2020), p. 227. doi: 10.1016/j.jcis.2020.03.089
    [146]
    X.L. Chen, W. Wang, T. Shi, G.L. Wu, and Y. Lu, One pot green synthesis and EM wave absorption performance of MoS2@nitrogen doped carbon hybrid decorated with ultrasmall cobalt ferrite nanoparticles, Carbon, 163(2020), p. 202. doi: 10.1016/j.carbon.2020.03.005
    [147]
    J. Li, D. Zhou, M.S. Fu, et al., Coral-like polypyrrole/LiFe5O8/MoS2 nanocomposites for high-efficiency microwave absorbers, ACS Appl. Nano Mater., 5(2022), No. 6, p. 7944. doi: 10.1021/acsanm.2c01022
    [148]
    C.Y. Wang, Y.Y. Ma, Z.H. Qin, J.J. Wang, and B. Zhong, Synthesis of hollow spherical MoS2@Fe3O4–GNs ternary composites with enhanced microwave absorption performance, Appl. Surf. Sci., 569(2021), art. No. 150812. doi: 10.1016/j.apsusc.2021.150812
    [149]
    M.Q. Ning, Z.K. Lei, G.G. Tan, Q.K. Man, J.B. Li, and R.W. Li, Dumbbell-like Fe3O4@N-doped carbon@2H/1T-MoS2 with tailored magnetic and dielectric loss for efficient microwave absorbing, ACS Appl. Mater. Interfaces, 13(2021), No. 39, p. 47061. doi: 10.1021/acsami.1c13852
    [150]
    H. Du, Q.P. Zhang, B. Zhao, et al., Novel hierarchical structure of MoS2/TiO2/Ti3C2Tx composites for dramatically enhanced electromagnetic absorbing properties, J. Adv. Ceram., 10(2021), No. 5, p. 1042. doi: 10.1007/s40145-021-0487-9
    [151]
    R.R. Yu, Y.H. Xia, X.Y. Pei, et al., Micro-flower like core–shell structured ZnCo@C@1T-2H-MoS2 composites for broadband electromagnetic wave absorption and photothermal performance, J. Colloid Interface Sci., 622(2022), p. 261. doi: 10.1016/j.jcis.2022.01.179
    [152]
    Z.Q. Yang, H.Q. Guo, W.B. You, et al., Compressible and flexible PPy@MoS2/C microwave absorption foam with strong dielectric polarization from 2D semiconductor intermediate sandwich structure, Nanoscale, 13(2021), No. 9, p. 5115. doi: 10.1039/D0NR08794G
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(1506) PDF Downloads(183) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return