Cite this article as: |
Xiaoying Qian, Hong Yang, Chunfeng Hu, Ying Zeng, Yuanding Huang, Xin Shang, Yangjie Wan, Bin Jiang, and Qingguo Feng, Effect of potential difference between nano-Al2O3 whisker and Mg matrix on the dispersion of Mg composites, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 104-111. https://doi.org/10.1007/s12613-022-2550-0 |
Hong Yang E-mail: hong.yang@cqu.edu.cn
Bin Jiang E-mail: jiangbinrong@cqu.edu.cn
Qingguo Feng E-mail: qfeng@swjtu.edu.cn
[1] |
E. Karthick, J. Mathai, J.M. Tony, and S.K. Marikkannan, Processing, microstructure and mechanical properties of Al2O3 and SiC reinforced magnesium metal matrix hybrid composites, Mater. Today Proc., 4(2017), No. 6, p. 6750. doi: 10.1016/j.matpr.2017.06.451
|
[2] |
Y.W. Wu, K. Wu, K.K. Deng, et al., Effect of extrusion temperature on microstructures and damping capacities of Grp/AZ91 composite, J. Alloys Compd., 506(2010), No. 2, p. 688. doi: 10.1016/j.jallcom.2010.07.043
|
[3] |
B. Lei, B. Jiang, H.B. Yang, et al., Effect of Nd addition on the microstructure and mechanical properties of extruded Mg–Gd–Zr alloy, Mater. Sci. Eng. A, 816(2021), art. No. 141320. doi: 10.1016/j.msea.2021.141320
|
[4] |
H.B. Yang, L. Wu, B. Jiang, et al., Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg–Li alloys for primary Mg-air batteries, J. Mater. Sci. Technol., 62(2021), p. 128. doi: 10.1016/j.jmst.2020.05.067
|
[5] |
J.X. Yang, G.L. Koons, G. Cheng, L.H. Zhao, A.G. Mikos, and F.Z. Cui, A review on the exploitation of biodegradable magnesium-based composites for medical applications, Biomed. Mater., 13(2018), No. 2, art. No. 022001. doi: 10.1088/1748-605X/aa8fa0
|
[6] |
J.L. Su, J. Teng, Z.L. Xu, and Y. Li, Biodegradable magnesium-matrix composites: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 724. doi: 10.1007/s12613-020-1987-2
|
[7] |
W.J. Liu, B. Jiang, H.C. Xiang, et al., High-temperature mechanical properties of as-extruded AZ80 magnesium alloy at different strain rates, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1373. doi: 10.1007/s12613-022-2456-x
|
[8] |
C. He, Y.B. Zhang, M. Yuan, et al., Improving the room-temperature bendability of Mg–3Al–1Zn alloy sheet by introducing a bimodal microstructure and the texture re-orientation, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1322. doi: 10.1007/s12613-021-2384-1
|
[9] |
H. Yang, X.H. Chen, G.S. Huang, et al., Microstructures and mechanical properties of titanium-reinforced magnesium matrix composites: Review and perspective, J. Magnes. Alloys, 2022. https://doi.org/10.1016/j.jma.2022.07.008
|
[10] |
J.H. Liang, H.J. Li, L.H. Qi, et al., Fabrication and mechanical properties of CNTs/Mg composites prepared by combining friction stir processing and ultrasonic assisted extrusion, J. Alloys Compd., 728(2017), p. 282. doi: 10.1016/j.jallcom.2017.09.009
|
[11] |
H.M. Xie, Y.Y. Wei, B. Jiang, C.P. Tang, and C.Y. Nie, Tribological properties of carbon nanotube/SiO2 combinations as water-based lubricant additives for magnesium alloy, J. Mater. Res. Technol., 12(2021), p. 138. doi: 10.1016/j.jmrt.2021.02.079
|
[12] |
L.L. Meng, X.S. Hu, X.J. Wang, et al., Graphene nanoplatelets reinforced Mg matrix composite with enhanced mechanical properties by structure construction, Mater. Sci. Eng. A, 733(2018), p. 414. doi: 10.1016/j.msea.2018.07.056
|
[13] |
S. Jabbarzare, H.R. Bakhsheshi-Rad, A.A. Nourbakhsh, T. Ahmadi, and F. Berto, Effect of graphene oxide on the corrosion, mechanical and biological properties of Mg-based nanocomposite, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 305. doi: 10.1007/s12613-020-2201-2
|
[14] |
P. Xiao, Y.M. Gao, F.X. Xu, et al., An investigation on grain refinement mechanism of TiB2 particulate reinforced AZ91 composites and its effect on mechanical properties, J. Alloys Compd., 780(2019), p. 237. doi: 10.1016/j.jallcom.2018.11.253
|
[15] |
M.Y. Zheng, K. Wu, and C.K. Yao, Effect of interfacial reaction on mechanical behavior of SiCw/AZ91 magnesium matrix composites, Mater. Sci. Eng. A, 318(2001), No. 1-2, p. 50. doi: 10.1016/S0921-5093(01)01338-7
|
[16] |
H. Tsukamoto, Enhancement of mechanical properties of SiCw/SiCp-reinforced magnesium composites fabricated by spark plasma sintering, Results Mater., 9(2021), art. No. 100167. doi: 10.1016/j.rinma.2020.100167
|
[17] |
X.P. Zhang, H.X. Wang, L.P. Bian, et al., Microstructure evolution and mechanical properties of Mg–9Al–1Si–1SiC composites processed by multi-pass equal-channel angular pressing at various temperatures, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1966. doi: 10.1007/s12613-020-2123-z
|
[18] |
Y.C. Yu, S.W. Tang, Z.L. Wang, and J. Hu, Effects of coating contents on the interfacial reaction and tensile properties of Al2O3 coated-Al18B4O33w/Al–Mg matrix composites, Mater. Charact., 107(2015), p. 327. doi: 10.1016/j.matchar.2015.07.029
|
[19] |
X.S. Zeng, Y. Liu, Q.Y. Huang, G. Zeng, and G.H. Zhou, Effects of carbon nanotubes on the microstructure and mechanical properties of the wrought Mg–2.0Zn alloy, Mater. Sci. Eng. A, 571(2013), p. 150. doi: 10.1016/j.msea.2013.02.014
|
[20] |
Q.H. Yuan, G.H. Zhou, L. Liao, Y. Liu, and L. Luo, Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets, Carbon, 127(2018), p. 177. doi: 10.1016/j.carbon.2017.10.090
|
[21] |
P. Xiao, Y.M. Gao, F.X. Xu, et al., Tribological behavior of in situ nanosized TiB2 particles reinforced AZ91 matrix composite, Tribol. Int., 128(2018), p. 130. doi: 10.1016/j.triboint.2018.07.003
|
[22] |
Y.P. Zhu, P.P. Jin, W.D. Fei, S.C. Xu, and J.H. Wang, Effects of Mg2B2O5 whiskers on microstructure and mechanical properties of AZ31B magnesium matrix composites, Mater. Sci. Eng. A, 684(2017), p. 205. doi: 10.1016/j.msea.2016.12.035
|
[23] |
S. Arai, Y. Suzuki, J. Nakagawa, T. Yamamoto, and M. Endo, Fabrication of metal coated carbon nanotubes by electroless deposition for improved wettability with molten aluminum, Surf. Coat. Technol., 212(2012), p. 207. doi: 10.1016/j.surfcoat.2012.09.051
|
[24] |
W.M. Tucho, H. Mauroy, J.C. Walmsley, S. Deledda, R. Holmestad, and B.C. Hauback, The effects of ball milling intensity on morphology of multiwall carbon nanotubes, Scripta Mater., 63(2010), No. 6, p. 637. doi: 10.1016/j.scriptamat.2010.05.039
|
[25] |
H. Yu, Y. Sun, L.X. Hu, Z.P. Wan, and H.P. Zhou, The effect of Ti addition on microstructure evolution of AZ61 Mg alloy during mechanical milling, J. Alloys Compd., 704(2017), p. 537. doi: 10.1016/j.jallcom.2017.02.029
|
[26] |
M. Estili and A. Kawasaki, An approach to mass-producing individually alumina-decorated multi-walled carbon nanotubes with optimized and controlled compositions, Scripta Mater., 58(2008), No. 10, p. 906. doi: 10.1016/j.scriptamat.2008.01.016
|
[27] |
W. Gong, X.C. Li, and B.Q. Zhu, Modeling calculation and synthesis of alumina whiskers based on the vapor deposition process, Materials, 10(2017), No. 10, art. No. 1192. doi: 10.3390/ma10101192
|
[28] |
F. Zuo, F. Meng, D.T. Lin, et al., Influence of whisker-aspect-ratio on densification, microstructure and mechanical properties of Al2O3 whiskers-reinforced CeO2-stabilized ZrO2 composites, J. Eur. Ceram. Soc., 38(2018), No. 4, p. 1796. doi: 10.1016/j.jeurceramsoc.2017.11.037
|
[29] |
J. Corrochano, C. Cerecedo, V. Valcárcel, M. Lieblich, and F. Guitián, Whiskers of Al2O3 as reinforcement of a powder metallurgical 6061 aluminium matrix composite, Mater. Lett., 62(2008), No. 1, p. 103. doi: 10.1016/j.matlet.2007.04.080
|
[30] |
X.Y. Qu, F.C. Wang, C.S. Shi, et al., In situ synthesis of a gamma-Al2O3 whisker reinforced aluminium matrix composite by cold pressing and sintering, Mater. Sci. Eng. A, 709(2018), p. 223. doi: 10.1016/j.msea.2017.10.063
|
[31] |
L. Wang, Q.G. Fu, and F.L. Zhao, Improving oxidation resistance of MoSi2 coating by reinforced with Al2O3 whiskers, Intermetallics, 94(2018), p. 106. doi: 10.1016/j.intermet.2017.12.023
|
[32] |
H.W. Zhang, D.G. Zhu, S. Grasso, and C.F. Hu, Tunable morphology of aluminum oxide whiskers grown by hydrothermal method, Ceram. Int., 44(2018), No. 13, p. 14967. doi: 10.1016/j.ceramint.2018.05.072
|
[33] |
D.S. Zhu, X.F. Li, N. Wang, X.J. Wang, J.W. Gao, and H. Li, Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids, Curr. Appl. Phys., 9(2009), No. 1, p. 131. doi: 10.1016/j.cap.2007.12.008
|
[34] |
S.J. Clark, M.D. Segall, C.J. Pickard, et al., First principles methods using CASTEP, Z. Kristallogr., 220(2005), No. 5-6, p. 567.
|
[35] |
M. Marlo and V. Milman, Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals, Phys. Rev. B, 62(2000), No. 4, p. 2899. doi: 10.1103/PhysRevB.62.2899
|
[36] |
X.J. Wang, D.S. Zhu, and S. Yang, Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids, Chem. Phys. Lett., 470(2009), No. 1-3, p. 107. doi: 10.1016/j.cplett.2009.01.035
|
[37] |
P.L. Chen, Z.X. Zhong, F. Liu, and W.H. Xing, Cleaning ceramic membranes used in treating desizing wastewater with a complex-surfactant SDBS-assisted method, Desalination, 365(2015), p. 25. doi: 10.1016/j.desal.2015.01.037
|
[38] |
X.L. Tan, M. Fang, C.L. Chen, S.M. Yu, and X.K. Wang, Counterion effects of nickel and sodium dodecylbenzene sulfonate adsorption to multiwalled carbon nanotubes in aqueous solution, Carbon, 46(2008), No. 13, p. 1741. doi: 10.1016/j.carbon.2008.07.023
|
[39] |
S.L. Xiang, X.J. Wang, M. Gupta, K. Wu, X.S. Hu, and M.Y. Zheng, Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties, Sci. Rep., 6(2016), art. No. 38824. doi: 10.1038/srep38824
|
[40] |
A. Nevarez-Rascon, A. Aguilar-Elguezabal, E. Orrantia, and M.H. Bocanegra-Bernal, Compressive strength, hardness and fracture toughness of Al2O3 whiskers reinforced ZTA and ATZ nanocomposites: Weibull analysis, Int. J. Refract. Met. Hard Mater., 29(2011), No. 3, p. 333. doi: 10.1016/j.ijrmhm.2010.12.008
|
[41] |
R.A. Saravanan and M.K. Surappa, Fabrication and characterisation of pure magnesium–30 vol.% SiCp particle composite, Mater. Sci. Eng. A, 276(2000), No. 1-2, p. 108. doi: 10.1016/S0921-5093(99)00498-0
|
[42] |
D.G. Altman and J.M. Bland, Standard deviations and standard errors, BMJ, 331(2005), No. 7521, art. No. 903. doi: 10.1136/bmj.331.7521.903
|