Xiang Li, Baozhong Ma, Chengyan Wang, Die Hu, Yingwei Lü,  and Yongqiang Chen, Recycling and recovery of spent copper–indium–gallium–diselenide (CIGS) solar cells: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 989-1002. https://doi.org/10.1007/s12613-022-2552-y
Cite this article as:
Xiang Li, Baozhong Ma, Chengyan Wang, Die Hu, Yingwei Lü,  and Yongqiang Chen, Recycling and recovery of spent copper–indium–gallium–diselenide (CIGS) solar cells: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 989-1002. https://doi.org/10.1007/s12613-022-2552-y
Invited Review

Recycling and recovery of spent copper–indium–gallium–diselenide (CIGS) solar cells: A review

+ Author Affiliations
  • Corresponding authors:

    Baozhong Ma    E-mail: bzhma_ustb@yeah.net

    Chengyan Wang    E-mail: chywang@yeah.net

  • Received: 24 June 2022Revised: 15 September 2022Accepted: 16 September 2022Available online: 20 September 2022
  • Copper–indium–gallium–diselenide (CIGS) is a fast-evolving commercial solar cell. The firm demand for global carbon reduction and the rise of potential environmental threats necessitate spent CIGS solar cell recycling. In this paper, the sources and characteristics of valuable metals in spent CIGS solar cells were reviewed. The potential environmental impacts of CIGS, including service life, critical material, and material toxicity, were outlined. The main recovery methods of valuable metals in the various types of spent CIGS, including hydrometallurgy, pyrometallurgy, and comprehensive treatment processes, were compared and discussed. The mechanism of different recovery processes was summarized. The challenges faced by different recycling processes of spent CIGS were also covered in this review. Finally, the economic viability of the recycling process was assessed. The purpose of this review is to provide reasonable suggestions for the sustainable development of CIGS and the harmless disposal of spent CIGS.
  • loading
  • [1]
    P. Yilmaz, J. Schmitz, and M. Theelen, Potential induced degradation of CIGS PV systems: A literature review, Renewable Sustainable Energy Rev., 154(2022), art. No. 111819. doi: 10.1016/j.rser.2021.111819
    [2]
    A.K. Patel, R. Mishra, and S.K. Soni, Performance enhancement of CIGS solar cell with two dimensional MoS2 hole transport layer, Micro Nanostructures, 165(2022), art. No. 207195. doi: 10.1016/j.micrna.2022.207195
    [3]
    J.Y. Du, M.Q. Zhang, and J.J. Tian, Controlled crystal orientation of two-dimensional Ruddlesden–Popper halide perovskite films for solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 49. doi: 10.1007/s12613-021-2341-z
    [4]
    M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, et al., Solar cell efficiency tables (Version 60), Prog. Photovoltaics Res. Appl., 30(2022), No. 7, p. 687. doi: 10.1002/pip.3595
    [5]
    M.A. Green, Y. Hishikawa, E.D. Dunlop, et al., Solar cell efficiency tables (Version 53), Prog. Photovoltaics Res. Appl., 27(2019), No. 1, p. 3. doi: 10.1002/pip.3102
    [6]
    F.E. Cherif and H. Sammouda, Prediction of the power conversion efficiency of Perovskite-on-CIGS tandem and triple junctions thin-film cells under solar concentration irradiations by optimization of structural and optoelectronic materials characteristic, Mater. Sci. Eng. B, 280(2022), p. 115712. doi: 10.1016/j.mseb.2022.115712
    [7]
    N.G. Dhere, Toward GW/year of CIGS production within the next decade, Sol. Energy Mater. Sol. Cells, 91(2007), No. 15-16, p. 1376. doi: 10.1016/j.solmat.2007.04.003
    [8]
    Y.J. Zhou, J.W. Li, H. Rechberger, et al., Dynamic criticality of by-products used in thin-film photovoltaic technologies by 2050, J. Clean. Prod., 263(2020), art. No. 121599. doi: 10.1016/j.jclepro.2020.121599
    [9]
    L. Rocchetti and F. Beolchini, Recovery of valuable materials from end-of-life thin-film photovoltaic panels: Environmental impact assessment of different management options, J. Clean. Prod., 89(2015), p. 59. doi: 10.1016/j.jclepro.2014.11.009
    [10]
    V. Fthenakis, W.M. Wang, and H.C. Kim, Life cycle inventory analysis of the production of metals used in photovoltaics, Renewable Sustainable Energy Rev., 13(2009), No. 3, p. 493. doi: 10.1016/j.rser.2007.11.012
    [11]
    J.E. De-la-Cruz-Moreno, A.E. Ceniceros-Gómez, O. Morton-Bermea, and E. Hernández-Álvarez, Recovery of indium from jarosite residues of zinc refinery by a hydrometallurgical process, Hydrometallurgy, 203(2021), art. No. 105697. doi: 10.1016/j.hydromet.2021.105697
    [12]
    Z.G. Deng, X.B. Li, C. Wei, G. Fan, M.T. Li, and C.X. Li, Recovery of indium from hard zinc slag by pressure leaching and solvent extraction, JOM, 73(2021), No. 2, p. 721. doi: 10.1007/s11837-020-04519-4
    [13]
    K.F. Zhang, L.L. Qiu, J.Z. Tao, et al., Recovery of gallium from leach solutions of zinc refinery residues by stepwise solvent extraction with N235 and Cyanex 272, Hydrometallurgy, 205(2021), art. No. 105722. doi: 10.1016/j.hydromet.2021.105722
    [14]
    F.W. Liu, G. Biesold, M. Zhang, et al., Recycling and recovery of perovskite solar cells, Mater. Today, 43(2021), p. 185. doi: 10.1016/j.mattod.2020.11.024
    [15]
    F. Maddah, M. Alitabar, and H. Yoozbashizadeh, Reductive leaching of indium from the neutral leaching residue using oxalic acid in sulfuric acid solution, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 373. doi: 10.1007/s12613-020-1974-7
    [16]
    K. Kacha, F. Djeffal, H. Ferhati, et al., Efficiency improvement of CIGS solar cells using RF sputtered TCO/Ag/TCO thin-film as prospective buffer layer, Ceram. Int., 48(2022), No. 14, p. 20194. doi: 10.1016/j.ceramint.2022.03.298
    [17]
    P. Misra, S. Mandati, T.N. Rao, and B.V. Sarada, A multi-layer Cu: Ga/In sputtered precursor to improve structural properties of CIGS absorber layer, Mater. Today Proc., 39(2021), p. 2037. doi: 10.1016/j.matpr.2020.09.545
    [18]
    F.T. Munna, V. Selvanathan, K. Sobayel, et al., Diluted chemical bath deposition of CdZnS as prospective buffer layer in CIGS solar cell, Ceram. Int., 47(2021), No. 8, p. 11003. doi: 10.1016/j.ceramint.2020.12.222
    [19]
    M. Acciarri, A. Le Donne, S. Marchionna, et al., CIGS thin films grown by hybrid sputtering-evaporation method: Properties and PV performance, Sol. Energy, 175(2018), p. 16. doi: 10.1016/j.solener.2018.02.024
    [20]
    C. Candelise, M. Winskel, and R. Gross, Implications for CdTe and CIGS technologies production costs of indium and tellurium scarcity, Prog. Photovolt: Res. Appl., 20(2012), No. 6, p. 816. doi: 10.1002/pip.2216
    [21]
    V. Fthenakis, Sustainability of photovoltaics: The case for thin-film solar cells, Renewable Sustainable Energy Rev., 13(2009), No. 9, p. 2746. doi: 10.1016/j.rser.2009.05.001
    [22]
    N. Mufti, T. Amrillah, A. Taufiq, et al., Review of CIGS-based solar cells manufacturing by structural engineering, Sol. Energy, 207(2020), p. 1146. doi: 10.1016/j.solener.2020.07.065
    [23]
    L.L. Yan, Y.M. Bai, B. Yang, et al., Extending absorption of near-infrared wavelength range for high efficiency CIGS solar cell via adjusting energy band, Curr. Appl. Phys., 18(2018), No. 4, p. 484. doi: 10.1016/j.cap.2017.12.015
    [24]
    L.Y. Sun, B.R. Liu, T. Wu, et al., Hydrometallurgical recycling of valuable metals from spent lithium-ion batteries by reductive leaching with stannous chloride, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 991. doi: 10.1007/s12613-020-2115-z
    [25]
    A. Urbina, The balance between efficiency, stability and environmental impacts in perovskite solar cells: A review, J. Phys. Energy, 2(2020), No. 2, art. No. 022001. doi: 10.1088/2515-7655/ab5eee
    [26]
    S. Resalati, T. Okoroafor, A. Maalouf, E. Saucedo, and M. Placidi, Life cycle assessment of different chalcogenide thin-film solar cells, Appl. Energy, 313(2022), art. No. 118888. doi: 10.1016/j.apenergy.2022.118888
    [27]
    L. Stamford and A. Azapagic, Environmental impacts of copper–indium–gallium–selenide (CIGS) photovoltaics and the elimination of cadmium through atomic layer deposition, Sci. Total Environ., 688(2019), p. 1092. doi: 10.1016/j.scitotenv.2019.06.343
    [28]
    J.H. Zheng, L.X. Zhu, Z.T. Shen, et al., Effects of the incorporation amounts of CdS and Cd(SCN2H4)2Cl2 on the performance of perovskite solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 283. doi: 10.1007/s12613-021-2316-0
    [29]
    J.F. Guillemoles, The puzzle of Cu(In,Ga)Se2 (CIGS) solar cells stability, Thin Solid Films, 403-404(2002), p. 405. doi: 10.1016/S0040-6090(01)01519-X
    [30]
    P.R. Elowe, M.A. Stempki, S.J. Rozeveld, and M.W. DeGroot, Development of direct cell inorganic barrier film technology providing exceptional device stability for CIGS solar cells, Chem. Mater., 23(2011), No. 17, p. 3915. doi: 10.1021/cm201281v
    [31]
    Z.B. Que, L. Chu, S.B. Zhai, et al., Self-assembled TiO2 hole-blocking layers for efficient perovskite solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1280. doi: 10.1007/s12613-021-2361-8
    [32]
    A.F. Sherwani, J.A. Usmani, and Varun, Life cycle assessment of solar PV based electricity generation systems: A review, Renewable Sustainable Energy Rev., 14(2010), No. 1, p. 540. doi: 10.1016/j.rser.2009.08.003
    [33]
    P.G.V. Sampaio and M.O.A. González, Photovoltaic solar energy: Conceptual framework, Renewable Sustainable Energy Rev., 74(2017), p. 590. doi: 10.1016/j.rser.2017.02.081
    [34]
    Y.B. Liu, B.Z. Ma, Y.W. Lü, C.Y. Wang, and Y.Q. Chen, A review of lithium extraction from natural resources, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 209. doi: 10.1007/s12613-022-2544-y
    [35]
    X.L. Zhang, J. Kou, C.B. Sun, R.Y. Zhang, M. Su, and S.F. Li, Mineralogical characterization of copper sulfide tailings using automated mineral liberation analysis: A case study of the Chambishi Copper Mine tailings, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 944. doi: 10.1007/s12613-020-2093-1
    [36]
    Z.Y. Ma, H.Y. Yang, S.T. Huang, Y. Lü, and L. Xiong, Ultra fast microwave-assisted leaching for the recovery of copper and tellurium from copper anode slime, Int. J. Miner. Metall. Mater., 22(2015), No. 6, p. 582. doi: 10.1007/s12613-015-1110-2
    [37]
    A.K. Tan, N.A. Hamzah, M.A. Ahmad, S.S. Ng, and Z. Hassan, Recent advances and challenges in the MOCVD growth of indium gallium nitride: A brief review, Mater. Sci. Semicond. Process., 143(2022), art. No. 106545. doi: 10.1016/j.mssp.2022.106545
    [38]
    V. Kashyap and P. Taylor, Extraction and recovery of zinc and indium from residue rich in zinc ferrite, Miner. Eng., 176(2022), art. No. 107364. doi: 10.1016/j.mineng.2021.107364
    [39]
    F.H. Lu, T.F. Xiao, J. Lin, et al., Resources and extraction of gallium: A review, Hydrometallurgy, 174(2017), p. 105. doi: 10.1016/j.hydromet.2017.10.010
    [40]
    S. Padhy, V. Kumar, N.B. Chaure, and U.P. Singh, Impact of germanium nano layer on the CZTSe absorber layer properties, Mater. Sci. Semicond. Process., 138(2022), art. No. 106276. doi: 10.1016/j.mssp.2021.106276
    [41]
    C. Rachidy, B. Hartiti, S. Touhtouh, et al., Enhancing CZTS solar cell parameters using CZTSe BSF layer and non-toxic SnS2/In2S3 buffer layer, Mater. Today Proc., 66(2022), p. 26. doi: 10.1016/j.matpr.2022.03.106
    [42]
    P.M. Reshmi, A.G. Kunjomana, and K.A. Chandrasekharan, Electrical and mechanical properties of vapour grown gallium monotelluride crystals, Int. J. Miner. Metall. Mater., 20(2013), No. 10, p. 967. doi: 10.1007/s12613-013-0822-4
    [43]
    A. Haddout, M. Fahoume, A. Qachaou, A. Raidou, M. Lharch, and N. Elharfaoui, Influence of composition ratio on the performances of kesterite solar cell with double CZTS layers—A numerical approach, Sol. Energy, 189(2019), p. 491. doi: 10.1016/j.solener.2019.07.098
    [44]
    B.A. Andersson, Materials availability for large-scale thin-film photovoltaics, Prog. Photovolt: Res. Appl., 8(2000), No. 1, p. 61. doi: 10.1002/(SICI)1099-159X(200001/02)8:1<61::AID-PIP301>3.0.CO;2-6
    [45]
    C. Yang, J.L. Zhang, Q.K. Jing, Y.B. Liu, Y.Q. Chen, and C.Y. Wang, Recovery and regeneration of LiFePO4 from spent lithium-ion batteries via a novel pretreatment process, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1478. doi: 10.1007/s12613-020-2137-6
    [46]
    Z.K. Zhao, H.L. Xie, Z.Y. Wen, et al., Tuning Li3PO4 modification on the electrochemical performance of nickel-rich LiNi0.6Co0.2Mn0.2O2, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1488. doi: 10.1007/s12613-020-2232-8
    [47]
    J.P. Namahoro, Q.S. Wu, and H. Su, The copper production and economic growth nexus across the regional and global levels, Resour. Policy, 76(2022), art. No. 102583. doi: 10.1016/j.resourpol.2022.102583
    [48]
    E.V. Maistruk, I.G. Orletskyi, M.I. Ilashchuk, et al., ZnO:Al/ZnS/n-CdTe heterojunctions’ electric and photoelectric properties, Optik, 276(2023), p. 170663. doi: 10.1016/j.ijleo.2023.170663
    [49]
    W. Tefera, L. Tang, L.L. Lu, R.H. Xie, W. Seifu, and S.K. Tian, Rice cultivars significantly mitigate cadmium accumulation in grains and its bioaccessibility and toxicity in human HL-7702 cells, Environ. Pollut., 272(2021), art. No. 116020. doi: 10.1016/j.envpol.2020.116020
    [50]
    F.F. Jaldurgam, Z. Ahmad, F. Touati, et al., Enhancement of thermoelectric properties of low-toxic and earth-abundant copper selenide thermoelectric material by microwave annealing, J. Alloys Compd., 904(2022), art. No. 164131. doi: 10.1016/j.jallcom.2022.164131
    [51]
    A. Tanaka, M. Hirata, Y. Kiyohara, et al., Review of pulmonary toxicity of indium compounds to animals and humans, Thin Solid Films, 518(2010), No. 11, p. 2934. doi: 10.1016/j.tsf.2009.10.123
    [52]
    E.M. Bomhard, The toxicology of gallium oxide in comparison with gallium arsenide and indium oxide, Environ. Toxicol. Pharmacol., 80(2020), art. No. 103437. doi: 10.1016/j.etap.2020.103437
    [53]
    D.A. Eisenberg, M.J. Yu, C.W. Lam, O.A. Ogunseitan, and J.M. Schoenung, Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics, J. Hazard. Mater., 260(2013), p. 534. doi: 10.1016/j.jhazmat.2013.06.007
    [54]
    H.I. Hsiang, C.Y. Chiang, W.H. Hsu, W.S. Chen, and J.E. Chang, Leaching and re-synthesis of CIGS nanocrystallites from spent CIGS targets, Adv. Powder Technol., 27(2016), No. 3, p. 914. doi: 10.1016/j.apt.2016.02.012
    [55]
    S. Gu, B.T. Fu, G. Dodbiba, T. Fujita, and B.Z. Fang, Promising approach for recycling of spent CIGS targets by combining electrochemical techniques with dehydration and distillation, ACS Sustain. Chem. Eng., 6(2018), No. 5, p. 6950. doi: 10.1021/acssuschemeng.8b00787
    [56]
    A.M.K. Gustafsson, M.R.S. Foreman, and C. Ekberg, Recycling of high purity selenium from CIGS solar cell waste materials, Waste Manage., 34(2014), No. 10, p. 1775. doi: 10.1016/j.wasman.2013.12.021
    [57]
    Y.W. Lv, P. Xing, B.Z. Ma, et al., Separation and recovery of valuable elements from spent CIGS materials, ACS Sustain. Chem. Eng., 7(2019), No. 24, p. 19816. doi: 10.1021/acssuschemeng.9b05121
    [58]
    B.Z. Ma, X. Li, B. Liu, et al., Effective separation and recovery of valuable components from CIGS chamber waste via controlled phase transformation and selective leaching, ACS Sustain. Chem. Eng., 8(2020), p. 3026. doi: 10.1021/acssuschemeng.0c00138
    [59]
    F.W. Liu, T.M. Cheng, Y.J. Chen, et al., High-yield recycling and recovery of copper, indium, and gallium from waste copper indium gallium selenide thin-film solar panels, Sol. Energy Mater. Sol. Cells, 241(2022), art. No. 111691. doi: 10.1016/j.solmat.2022.111691
    [60]
    A. Amato and F. Beolchini, End-of-life CIGS photovoltaic panel: A source of secondary indium and gallium, Prog. Photovoltaics Res. Appl., 27(2019), No. 3, p. 229. doi: 10.1002/pip.3082
    [61]
    W. Palitzsch and U. Loser, Systematic photovoltaic waste recycling, Green, 3(2013), No. 1, p. 79. doi: 10.1515/green-2013-0008
    [62]
    K. Kushiya, M. Ohshita, and M. Tanaka, Development of recycling and reuse technologies for large-area Cu(InGa)Se2-based thin-film modules, [in] Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, 2003, p. 1892.
    [63]
    A.M.K. Gustafsson, B.M. Steenari, and C. Ekberg, Recycling of CIGS solar cell waste materials: Separation of copper, indium, and gallium by high-temperature chlorination reaction with ammonium chloride, Sep. Sci. Technol., 50(2015), No. 15, p. 2415. doi: 10.1080/01496395.2015.1053569
    [64]
    A.M.K. Gustafsson, B.M. Steenari, and C. Ekberg, Evaluation of high-temperature chlorination as a process for separation of copper, indium and gallium from CIGS solar cell waste materials, Sep. Sci. Technol., 50(2015), No. 1, p. 1. doi: 10.1080/01496395.2014.949350
    [65]
    W.T. Xu, Q. Song, G.C. Song, and Q. Yao, The vapor pressure of Se and SeO2 measurement using thermogravimetric analysis, Thermochim. Acta, 683(2020), art. No. 178480. doi: 10.1016/j.tca.2019.178480
    [66]
    G.R. Waitkins and C.W. Clark, Selenium dioxide: Preparation, properties, and use as oxidizing agent, Chem. Rev., 36(1945), No. 3, p. 235. doi: 10.1021/cr60115a001
    [67]
    J. Yang, Z.L. Zhang, G. Zhang, et al., Process study of chloride roasting and water leaching for the extraction of valuable metals from spent lithium-ion batteries, Hydrometallurgy, 203(2021), art. No. 105638. doi: 10.1016/j.hydromet.2021.105638
    [68]
    R. Panda, K.K. Pant, T. Bhaskar, and S.N. Naik, Dissolution of brominated epoxy resin for environment friendly recovery of copper as cupric oxide nanoparticles from waste printed circuit boards using ammonium chloride roasting, J. Clean. Prod., 291(2021), art. No. 125928. doi: 10.1016/j.jclepro.2021.125928
    [69]
    V.J. Martínez-Gómez, J.C. Fuentes-Aceituno, R. Pérez-Garibay, and J.C. Lee, A study of the electro-assisted reductive leaching of a chalcopyrite concentrate in HCl solutions. Part I: Kinetic behavior and nature of the chalcopyrite reduction, Hydrometallurgy, 181(2018), p. 195. doi: 10.1016/j.hydromet.2018.09.012
    [70]
    H.B. Zhao, J. Wang, X.W. Gan, et al., Role of pyrite in sulfuric acid leaching of chalcopyrite: An elimination of polysulfide by controlling redox potential, Hydrometallurgy, 164(2016), p. 159. doi: 10.1016/j.hydromet.2016.04.013
    [71]
    H. Chen, J.F. He, L.T. Zhu, et al., Eco-friendly oxidation leaching from chalcopyrite powder and kinetics assisted by sodium chloride in organic acid media, Adv. Powder Technol., 33(2022), No. 5, art. No. 103547. doi: 10.1016/j.apt.2022.103547
    [72]
    E.M. Córdoba, J.A. Muñoz, M.L. Blázquez, F. González, and A. Ballester, Leaching of chalcopyrite with ferric ion. Part I: General aspects, Hydrometallurgy, 93(2008), No. 3-4, p. 81. doi: 10.1016/j.hydromet.2008.04.015
    [73]
    H. Gholami, B. Rezai, A. Hassanzadeh, A. Mehdilo, and M. Yarahmadi, Effect of microwave pretreatment on grinding and flotation kinetics of copper complex ore, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1887. doi: 10.1007/s12613-020-2106-0
    [74]
    H. Nourmohamadi, M.D. Esrafili, V. Aghazadeh, and B. Rezai, The influence of Ag+ cation on elemental sulfur passive layer and adsorption behavior of chalcopyrite toward Fe3+ and Fe2+ ions: Insights from DFT calculations and molecular dynamics simulations, Physica B, 627(2022), p. 413611. doi: 10.1016/j.physb.2021.413611
    [75]
    D. Hu, B.Z. Ma, X. Li, Y.W. Lv, Y.Q. Chen, and C.Y. Wang, Innovative and sustainable separation and recovery of valuable metals in spent CIGS materials, J. Clean. Prod., 350(2022), art. No. 131426. doi: 10.1016/j.jclepro.2022.131426
    [76]
    D. Hu, B.Z. Ma, X. Li, et al., Efficient separation and recovery of gallium and indium in spent CIGS materials, Sep. Purif. Technol., 282(2022), art. No. 120087. doi: 10.1016/j.seppur.2021.120087
    [77]
    X. Li, B.Z. Ma, D. Hu, Q.Q. Zhao, Y.Q. Chen, and C.Y. Wang, Efficient separation and purification of indium and gallium in spent copper indium gallium diselenide (CIGS), J. Clean. Prod., 339(2022), art. No. 130658. doi: 10.1016/j.jclepro.2022.130658
    [78]
    W.S. Chen and S.M. Huang, The separation of indium and copper from spent Cu–In targets, Int. J. Appl. Ceram. Technol., 13(2016), No. 2, p. 274. doi: 10.1111/ijac.12515
    [79]
    W.S. Chen, Y.C. Wang, and K.L. Chiu, The separation and recovery of indium, gallium, and zinc from spent GZO(IGZO) targets, J. Environ. Chem. Eng., 5(2017), No. 1, p. 381. doi: 10.1016/j.jece.2016.12.005
    [80]
    H. Miyazaki, Recycling of CIGS absorber layer for deposition of CIGS film, Phys. Status Solidi C, 10(2013), No. 7-8, p. 1031. doi: 10.1002/pssc.201200826
    [81]
    W. Wang, C. Zhang, B. Hu, et al., Influence of alkali element post-deposition treatment on the performance of the CIGS solar cells on flexible stainless steel substrates, Mater. Lett., 302(2021), art. No. 130410. doi: 10.1016/j.matlet.2021.130410
    [82]
    M.W. Bouabdelli, F. Rogti, M. Maache, and A. Rabehi, Performance enhancement of CIGS thin-film solar cell, Optik, 216(2020), art. No. 164948. doi: 10.1016/j.ijleo.2020.164948
    [83]
    B. Sun, J.T. Dai, K.K. Huang, C.H. Yang, and W.H. Gui, Smart manufacturing of nonferrous metallurgical processes: Review and perspectives, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 611. doi: 10.1007/s12613-022-2448-x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(1749) PDF Downloads(180) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return