Juncheng Li, Guoxuan Li, Feng Qiu, Rong Wang, Jinshan Liang, Yi Zhong, Dong Guan, Jingwei Li, Seetharaman Sridhar, and Zushu Li, Nucleation and growth control for iron- and phosphorus-rich phases from a modified steelmaking waste slag, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 378-387. https://doi.org/10.1007/s12613-022-2553-x
Cite this article as:
Juncheng Li, Guoxuan Li, Feng Qiu, Rong Wang, Jinshan Liang, Yi Zhong, Dong Guan, Jingwei Li, Seetharaman Sridhar, and Zushu Li, Nucleation and growth control for iron- and phosphorus-rich phases from a modified steelmaking waste slag, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 378-387. https://doi.org/10.1007/s12613-022-2553-x
Research Article

Nucleation and growth control for iron- and phosphorus-rich phases from a modified steelmaking waste slag

+ Author Affiliations
  • Corresponding author:

    Juncheng Li    E-mail: leejc2011@163.com

  • Received: 8 July 2022Revised: 18 September 2022Accepted: 20 September 2022Available online: 24 September 2022
  • Recovering the iron (Fe) and phosphorus (P) contained in steelmaking slags not only reduces the environmental burden caused by the accumulated slag, but also is the way to develop a circular economy and achieve sustainable development in the steel industry. We had previously found the possibility of recovering Fe and P resources, i.e., magnetite (Fe3O4) and calcium phosphate (Ca10P6O25), contained in steelmaking slags by adjusting oxygen partial pressure and adding modifier B2O3. As a fundamental study for efficiently recovering Fe and P from steelmaking slag, in this study, the crystallization behavior of the CaO–SiO2–FeO–P2O5–B2O3 melt has been observed in situ, using a confocal scanning laser microscope (CLSM). The kinetics of nucleation and growth of Fe- and P-rich phases have been calculated using a classical crystallization kinetic theory. During cooling, a Fe3O4 phase with faceted morphology was observed as the 1st precipitated phase in the isothermal interval of 1300–1150°C, while Ca10P6O25, with rod-shaped morphology, was found to be the 2nd phase to precipitate in the interval of 1150–1000°C. The crystallization abilities of Fe3O4 and Ca10P6O25 phases in the CaO–SiO2–FeO–P2O5–B2O3 melt were quantified with the index of (TUTI)/TI (where TI represents the peak temperature of the nucleation rate and TU stands for that of growth rate), and the crystallization ability of Fe3O4 was found to be larger than that of Ca10P6O25 phase. The range of crystallization temperature for Fe3O4 and Ca10P6O25 phases was optimized subsequently. The Fe3O4 and Ca10P6O25 phases are the potential sources for ferrous feedstock and phosphate fertilizer, respectively.
  • loading
  • [1]
    I. Sosa, C. Thomas, J.A. Polanco, J. Setién, and P. Tamayo, High performance self-compacting concrete with electric arc furnace slag aggregate and cupola slag powder, Appl. Sci., 10(2020), No. 3, art. No. 773. doi: 10.3390/app10030773
    [2]
    G.M.P. Kumara and K. Kawamoto, Steel slag and autoclaved aerated concrete grains as low-cost adsorbents to remove Cd2+ and Pb2+ in wastewater: Effects of mixing proportions of grains and liquid-to-solid ratio, Sustainability, 13(2021), No. 18, art. No. 10321. doi: 10.3390/su131810321
    [3]
    Q.S. Wu and Z.C. Huang, Preparation and performance of lightweight porous ceramics using metallurgical steel slag, Ceram. Int., 47(2021), No. 18, p. 25169. doi: 10.1016/j.ceramint.2021.04.302
    [4]
    Z.J. Tang, J. Liang, W.H. Jiang, et al., Preparation of high strength foam ceramics from sand shale and steel slag, Ceram. Int., 46(2020), No. 7, p. 9256. doi: 10.1016/j.ceramint.2019.12.179
    [5]
    L. Lin, Y.Q. Liu, J.G. Zhi, et al., Influence of slag temperature on phosphorus enrichment in P-bearing steelmaking slag, Ironmaking Steelmaking, 48(2021), No. 3, p. 334. doi: 10.1080/03019233.2020.1780366
    [6]
    H. Matsuura, X. Yang, G.Q. Li, Z.F. Yuan, and F. Tsukihashi, Recycling of ironmaking and steelmaking slags in Japan and China, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 739. doi: 10.1007/s12613-021-2400-5
    [7]
    S. Seetharaman, L.J. Wang, and H.J. Wang, Slags containing transition metal (chromium and vanadium) oxides—Conversion from ticking bombs to valuable resources: Collaborative studies between KTH and USTB, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 750. doi: 10.1007/s12613-022-2424-5
    [8]
    J.H. Zhao, P.Y. Yan, and D.M. Wang, Research on mineral characteristics of converter steel slag and its comprehensive utilization of internal and external recycle, J. Cleaner Prod., 156(2017), p. 50. doi: 10.1016/j.jclepro.2017.04.029
    [9]
    L.M. Juckes, The volume stability of modern steelmaking slags, Trans. Inst. Min. Metall. Sect. C, 112(2003), No. 3, p. 177. doi: 10.1179/037195503225003708
    [10]
    F. Engström, D. Adolfsson, Q. Yang, C. Samuelsson, and B. Björkman, Crystallization behaviour of some steelmaking slags, Steel Res. Int., 81(2010), No. 5, p. 362. doi: 10.1002/srin.200900154
    [11]
    J.F.P. Gomes and C.G. Pinto, Leaching of heavy metals from steelmaking slags, Rev. Metal., 42(2006), No. 6, p. 409. doi: 10.3989/revmetalm.2006.v42.i6.39
    [12]
    L.J. Chen, Y. Wan, X.J. Xia, J. Li, Y.D. Yang, and A. Mclean, Dephosphorisation of hot metal containing moderate amounts of chromium with CaO–FeOx–Cr2O3–CaF2 slag, Ironmaking Steelmaking, 48(2021), No. 7, p. 868. doi: 10.1080/03019233.2021.1882645
    [13]
    D.J. Min, J.W. Han, and W.S. Chung, A study of the reduction rate of FeO in slag by solid carbon, Metall. Mater. Trans. B, 30(1999), No. 2, p. 215. doi: 10.1007/s11663-999-0050-5
    [14]
    D.Q. Fan, M. Elzohiery, Y. Mohassab, and H.Y. Sohn, The kinetics of carbon monoxide reduction of magnetite concentrate particles through CFD modelling, Ironmaking Steelmaking, 48(2021), No. 7, p. 769. doi: 10.1080/03019233.2020.1861857
    [15]
    A. Heidari, N. Niknahad, M. Iljana, and T. Fabritius, A review on the kinetics of iron ore reduction by hydrogen, Materials, 14(2021), No. 24, art. No. 7540. doi: 10.3390/ma14247540
    [16]
    A. Semykina, J. Nakano, S. Sridhar, V. Shatokha, and S. Seetharaman, Confocal microscopic studies on evolution of crystals during oxidation of the FeO–CaO–SiO2–MnO slags, Metall. Mater. Trans. B, 41(2010), No. 5, p. 940. doi: 10.1007/s11663-010-9392-2
    [17]
    A. Semykina, The kinetics of oxidation of liquid FeO–MnO–CaO–SiO2 slags in air, Metall. Mater. Trans. B, 43(2012), No. 1, p. 56. doi: 10.1007/s11663-011-9576-4
    [18]
    A. Semykina, J. Nakano, S. Sridhar, V. Shatokha, and S. Seetharaman, Confocal scanning laser microscopy studies of crystal growth during oxidation of a liquid FeO–CaO–SiO2 slag, Metall. Mater. Trans. B, 42(2011), No. 3, p. 471. doi: 10.1007/s11663-011-9505-6
    [19]
    W.J. Duan, Q.B. Yu, T.W. Wu, F. Yang, and Q. Qin, The steam gasification of coal with molten blast furnace slag as heat carrier and catalyst: Kinetic study, Int. J. Hydrogen Energy, 41(2016), No. 42, p. 18995. doi: 10.1016/j.ijhydene.2016.07.187
    [20]
    J.C. Li, D. Bhattacharjee, X.J. Hu, D.W. Zhang, S. Sridhar, and Z.S. Li, Crystallization behavior of liquid CaO–SiO2–FeO–MnO slag in relation to its reaction with moisture, Metall. Mater. Trans. B, 50(2019), No. 4, p. 1931. doi: 10.1007/s11663-019-01595-z
    [21]
    J.C. Li, D. Bhattacharjee, X.J. Hu, D.W. Zhang, S. Sridhar, and Z.S. Li, Effects of slag composition on H2 generation and magnetic precipitation from molten steelmaking slag–steam reaction, Metall. Mater. Trans. B, 50(2019), No. 2, p. 1023. doi: 10.1007/s11663-019-01533-z
    [22]
    B. Malvoisin, F. Brunet, J. Carlut, et al., High-purity hydrogen gas from the reaction between BOF steel slag and water in the 473–673 K range, Int. J. Hydrogen Energy, 38(2013), No. 18, p. 7382. doi: 10.1016/j.ijhydene.2013.03.163
    [23]
    W.Z. Wang, B. Liang, and J.R. Zhang, Experimental study on low temperature flotation recovery of apatite from a magnetic tailings, Appl. Mech. Mater., 522-524(2014), p. 1501. doi: 10.4028/www.scientific.net/AMM.522-524.1501
    [24]
    K. Matsubae-Yokoyama, H. Kubo, and T. Nagasaka, Recycling effects of residual slag after magnetic separation for phosphorus recovery from hot metal dephosphorization slag, ISIJ Int., 50(2010), No. 1, p. 65. doi: 10.2355/isijinternational.50.65
    [25]
    C. Li, J.T. Gao, F.Q. Wang, and Z.C. Guo, Enriching Fe-bearing and P-bearing phases from steelmaking slag melt by super gravity, Ironmaking Steelmaking, 45(2018), No. 1, p. 44. doi: 10.1080/03019233.2016.1236471
    [26]
    C. Li, J.T. Gao, and Z.C. Guo, Separation of phosphorus- and iron-enriched phase from CaO–SiO2–FeO–MgO–P2O5 melt with super gravity, Metall. Mater. Trans. B, 47(2016), No. 3, p. 1516. doi: 10.1007/s11663-015-0494-8
    [27]
    C. Li, J.T. Gao, and Z.C. Guo, Isothermal enrichment of P-concentrating phase from CaO–SiO2–FeO–MgO–P2O5 melt with super gravity, ISIJ Int., 56(2016), No. 5, p. 759. doi: 10.2355/isijinternational.ISIJINT-2015-633
    [28]
    Y.Y. Zhang, Q.G. Xue, G. Wang, and J.S. Wang, Gasification and migration of phosphorus from high-phosphorus iron ore during carbothermal reduction, ISIJ Int., 58(2018), No. 12, p. 2219. doi: 10.2355/isijinternational.ISIJINT-2018-372
    [29]
    M. Sugata, T. Sugiyama, and S.I. Kondo, Reduction of iron oxide contained in molten slags with solid carbon, ISIJ Int., 14(1974), No. 2, p. 88. doi: 10.2355/isijinternational1966.14.88
    [30]
    S. Takeuchi, N. Sano, and Y. Matsushita, Separate recovery of iron and phosphorus from BOF slags by using Fe–Si alloys, Tetsu-to-Hagane, 66(1980), No. 14, p. 2050. doi: 10.2355/tetsutohagane1955.66.14_2050
    [31]
    C.M. Du, X. Gao, S. Ueda, and S.Y. Kitamura, Separation and recovery of phosphorus from steelmaking slag via a selective leaching-chemical precipitation process, Hydrometallurgy, 189(2019), art. No. 105109. doi: 10.1016/j.hydromet.2019.105109
    [32]
    T. Teratoko, N. Maruoka, H. Shibata, and S.Y. Kitamura, Dissolution behavior of dicalcium silicate and tricalcium phosphate solid solution and other phases of steelmaking slag in an aqueous solution, High Temp. Mater. Process., 31(2012), No. 4-5, p. 329. doi: 10.1515/htmp-2012-0032
    [33]
    M. Numata, N. Maruoka, S.J. Kim, and S.Y. Kitamura, Fundamental experiment to extract phosphorous selectively from steelmaking slag by leaching, ISIJ Int., 54(2014), No. 8, p. 1983. doi: 10.2355/isijinternational.54.1983
    [34]
    H.M. Xue, J. Li, Y.J. Xia, Y. Wan, L.J. Chen, and C.J. Lv, Mechanism of phosphorus enrichment in dephosphorization slag produced using the technology of integrating dephosphorization and decarburization, Metals, 11(2021), No. 2, art. No. 216. doi: 10.3390/met11020216
    [35]
    J.M. Gonzalez, C.J. Penn, and S.J. Livingston, Utilization of steel slag in blind inlets for dissolved phosphorus removal, Water, 12(2020), No. 6, art. No. 1593. doi: 10.3390/w12061593
    [36]
    G.F. Ye, J. Yang, R.H. Zhang, W.K. Yang, and H. Sun, Behavior of phosphorus enrichment in dephosphorization slag at low temperature and low basicity, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 66. doi: 10.1007/s12613-020-2036-x
    [37]
    G.X. Li, J.S. Liang, J. Long, et al., A novel process for separation of magnetite and phosphorous phases from a CaO–SiO2–FeO–P2O5 slag, ISIJ Int., 62(2022), No. 7, p. 1556. doi: 10.2355/isijinternational.ISIJINT-2021-578
    [38]
    D. Turnbull, Formation of crystal nuclei in liquid metals, J. Appl. Phys., 21(1950), No. 10, p. 1022. doi: 10.1063/1.1699435
    [39]
    D. Turnbull, Under what conditions can a glass be formed? Contemp. Phys., 10(1969), No. 5, p. 473. doi: 10.1080/00107516908204405
    [40]
    J.C. Fisher, J.H. Hollomon, and D. Turnbull, Rate of nucleation of solid particles in a subcooled liquid, Science, 109(1949), No. 2825, p. 168. doi: 10.1126/science.109.2825.168.b
    [41]
    D.R. Uhlmann, A kinetic treatment of glass formation, J. Non-Cryst. Solids, 7(1972), No. 4, p. 337. doi: 10.1016/0022-3093(72)90269-4
    [42]
    I. Barin, Thermochemical Data of Pure Substances, 3rd ed., VCH Verlagsgesellschaft mbH, Weinheim, 1995, p. 478.
    [43]
    B. Li and Z.T. Sui, Glass crystallization kinetics of CaO–MgO–Fe2O3–Al2O3–SiO2 slags, Chin. J. Mater. Res., 13(1999), No. 4, p. 412.
    [44]
    P.X. Zhang, Z.T. Sui, D.M. Luo, and R.J. Ma, Study on crystallization kinetics of component containing boron in MgO–B2O3–SiO2–Al2O3–CaO slag, Chin. J. Mater. Res., 9(1995), No. 1, p. 66.
    [45]
    X. Zhang, B. Xie, J. Diao, and X.J. Li, Nucleation and growth kinetics of spinel crystals in vanadium slag, Ironmaking Steelmaking, 39(2012), No. 2, p. 147. doi: 10.1179/1743281211Y.0000000079
    [46]
    X. Lan, J.T. Gao, Z.W. Wang, and Z.C. Guo, Viscosity of RE-bearing slag systems and kinetics of nucleation and growth for RE-phases, Ceram. Int., 48(2022), No. 9, p. 13304. doi: 10.1016/j.ceramint.2022.01.209
    [47]
    K.C. Mills and S. Sridhar, Viscosities of ironmaking and steelmaking slags, Ironmaking Steelmaking, 26(1999), No. 4, p. 262. doi: 10.1179/030192399677121
    [48]
    E. Bordes-Richard, Multicomponent oxides in selective oxidation of alkanes theoretical acidity versus selectivity, Top. Catal., 50(2008), p. 82. doi: 10.1007/s11244-008-9115-y
    [49]
    X.F. Lei and X.X. Xue, Preparation, characterization and photocatalytic activity of sulfuric acid-modified titanium-bearing blast furnace slag, Trans. Nonferrous Met. Soc. China, 20(2010), No. 12, p. 2294. doi: 10.1016/S1003-6326(10)60643-7
    [50]
    Y.B. Zong, D.Q. Cang, Y.P. Zhen, Y. Li, and H. Bai, Component modification of steel slag in air quenching process to improve grindability, Trans. Nonferrous Met. Soc. China, 19(2009), Suppl. 3, p. s834.
    [51]
    G. Chen, J. Chen, J.H. Peng, and R.D. Wan, Green evaluation of microwave-assisted leaching process of high titanium slag on life cycle assessment, Trans. Nonferrous Met. Soc. China, 20(2010), Suppl. 1, p. s198.
    [52]
    W.L. Wang, S.F. Dai, T.S. Zhang, Z.M. Li, and Y.J. Xie, Effect of isothermal and cooling rate on crystallization and viscosity of silicomanganese waste slag, Ceram. Int., 47(2021), No. 10, p. 13622. doi: 10.1016/j.ceramint.2021.01.221
    [53]
    J.H. Wu, F.Q. Zhang, and G.H. Chen, A new method to estimate the ability of forming amorphous solids, Phys. Status Solidi A, 101(1987), No. 1, p. K1. doi: 10.1002/pssa.2211010131
    [54]
    W.A. Johnson and R.F. Mehl, Reaction kinetics in processes of nucleation and growth, Trans. AIME, 135(1939), p. 416.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Share Article

    Article Metrics

    Article Views(479) PDF Downloads(41) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return