Cite this article as: |
Juncheng Li, Guoxuan Li, Feng Qiu, Rong Wang, Jinshan Liang, Yi Zhong, Dong Guan, Jingwei Li, Seetharaman Sridhar, and Zushu Li, Nucleation and growth control for iron- and phosphorus-rich phases from a modified steelmaking waste slag, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 378-387. https://doi.org/10.1007/s12613-022-2553-x |
Juncheng Li E-mail: leejc2011@163.com
[1] |
I. Sosa, C. Thomas, J.A. Polanco, J. Setién, and P. Tamayo, High performance self-compacting concrete with electric arc furnace slag aggregate and cupola slag powder, Appl. Sci., 10(2020), No. 3, art. No. 773. doi: 10.3390/app10030773
|
[2] |
G.M.P. Kumara and K. Kawamoto, Steel slag and autoclaved aerated concrete grains as low-cost adsorbents to remove Cd2+ and Pb2+ in wastewater: Effects of mixing proportions of grains and liquid-to-solid ratio, Sustainability, 13(2021), No. 18, art. No. 10321. doi: 10.3390/su131810321
|
[3] |
Q.S. Wu and Z.C. Huang, Preparation and performance of lightweight porous ceramics using metallurgical steel slag, Ceram. Int., 47(2021), No. 18, p. 25169. doi: 10.1016/j.ceramint.2021.04.302
|
[4] |
Z.J. Tang, J. Liang, W.H. Jiang, et al., Preparation of high strength foam ceramics from sand shale and steel slag, Ceram. Int., 46(2020), No. 7, p. 9256. doi: 10.1016/j.ceramint.2019.12.179
|
[5] |
L. Lin, Y.Q. Liu, J.G. Zhi, et al., Influence of slag temperature on phosphorus enrichment in P-bearing steelmaking slag, Ironmaking Steelmaking, 48(2021), No. 3, p. 334. doi: 10.1080/03019233.2020.1780366
|
[6] |
H. Matsuura, X. Yang, G.Q. Li, Z.F. Yuan, and F. Tsukihashi, Recycling of ironmaking and steelmaking slags in Japan and China, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 739. doi: 10.1007/s12613-021-2400-5
|
[7] |
S. Seetharaman, L.J. Wang, and H.J. Wang, Slags containing transition metal (chromium and vanadium) oxides—Conversion from ticking bombs to valuable resources: Collaborative studies between KTH and USTB, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 750. doi: 10.1007/s12613-022-2424-5
|
[8] |
J.H. Zhao, P.Y. Yan, and D.M. Wang, Research on mineral characteristics of converter steel slag and its comprehensive utilization of internal and external recycle, J. Cleaner Prod., 156(2017), p. 50. doi: 10.1016/j.jclepro.2017.04.029
|
[9] |
L.M. Juckes, The volume stability of modern steelmaking slags, Trans. Inst. Min. Metall. Sect. C, 112(2003), No. 3, p. 177. doi: 10.1179/037195503225003708
|
[10] |
F. Engström, D. Adolfsson, Q. Yang, C. Samuelsson, and B. Björkman, Crystallization behaviour of some steelmaking slags, Steel Res. Int., 81(2010), No. 5, p. 362. doi: 10.1002/srin.200900154
|
[11] |
J.F.P. Gomes and C.G. Pinto, Leaching of heavy metals from steelmaking slags, Rev. Metal., 42(2006), No. 6, p. 409. doi: 10.3989/revmetalm.2006.v42.i6.39
|
[12] |
L.J. Chen, Y. Wan, X.J. Xia, J. Li, Y.D. Yang, and A. Mclean, Dephosphorisation of hot metal containing moderate amounts of chromium with CaO–FeOx–Cr2O3–CaF2 slag, Ironmaking Steelmaking, 48(2021), No. 7, p. 868. doi: 10.1080/03019233.2021.1882645
|
[13] |
D.J. Min, J.W. Han, and W.S. Chung, A study of the reduction rate of FeO in slag by solid carbon, Metall. Mater. Trans. B, 30(1999), No. 2, p. 215. doi: 10.1007/s11663-999-0050-5
|
[14] |
D.Q. Fan, M. Elzohiery, Y. Mohassab, and H.Y. Sohn, The kinetics of carbon monoxide reduction of magnetite concentrate particles through CFD modelling, Ironmaking Steelmaking, 48(2021), No. 7, p. 769. doi: 10.1080/03019233.2020.1861857
|
[15] |
A. Heidari, N. Niknahad, M. Iljana, and T. Fabritius, A review on the kinetics of iron ore reduction by hydrogen, Materials, 14(2021), No. 24, art. No. 7540. doi: 10.3390/ma14247540
|
[16] |
A. Semykina, J. Nakano, S. Sridhar, V. Shatokha, and S. Seetharaman, Confocal microscopic studies on evolution of crystals during oxidation of the FeO–CaO–SiO2–MnO slags, Metall. Mater. Trans. B, 41(2010), No. 5, p. 940. doi: 10.1007/s11663-010-9392-2
|
[17] |
A. Semykina, The kinetics of oxidation of liquid FeO–MnO–CaO–SiO2 slags in air, Metall. Mater. Trans. B, 43(2012), No. 1, p. 56. doi: 10.1007/s11663-011-9576-4
|
[18] |
A. Semykina, J. Nakano, S. Sridhar, V. Shatokha, and S. Seetharaman, Confocal scanning laser microscopy studies of crystal growth during oxidation of a liquid FeO–CaO–SiO2 slag, Metall. Mater. Trans. B, 42(2011), No. 3, p. 471. doi: 10.1007/s11663-011-9505-6
|
[19] |
W.J. Duan, Q.B. Yu, T.W. Wu, F. Yang, and Q. Qin, The steam gasification of coal with molten blast furnace slag as heat carrier and catalyst: Kinetic study, Int. J. Hydrogen Energy, 41(2016), No. 42, p. 18995. doi: 10.1016/j.ijhydene.2016.07.187
|
[20] |
J.C. Li, D. Bhattacharjee, X.J. Hu, D.W. Zhang, S. Sridhar, and Z.S. Li, Crystallization behavior of liquid CaO–SiO2–FeO–MnO slag in relation to its reaction with moisture, Metall. Mater. Trans. B, 50(2019), No. 4, p. 1931. doi: 10.1007/s11663-019-01595-z
|
[21] |
J.C. Li, D. Bhattacharjee, X.J. Hu, D.W. Zhang, S. Sridhar, and Z.S. Li, Effects of slag composition on H2 generation and magnetic precipitation from molten steelmaking slag–steam reaction, Metall. Mater. Trans. B, 50(2019), No. 2, p. 1023. doi: 10.1007/s11663-019-01533-z
|
[22] |
B. Malvoisin, F. Brunet, J. Carlut, et al., High-purity hydrogen gas from the reaction between BOF steel slag and water in the 473–673 K range, Int. J. Hydrogen Energy, 38(2013), No. 18, p. 7382. doi: 10.1016/j.ijhydene.2013.03.163
|
[23] |
W.Z. Wang, B. Liang, and J.R. Zhang, Experimental study on low temperature flotation recovery of apatite from a magnetic tailings, Appl. Mech. Mater., 522-524(2014), p. 1501. doi: 10.4028/www.scientific.net/AMM.522-524.1501
|
[24] |
K. Matsubae-Yokoyama, H. Kubo, and T. Nagasaka, Recycling effects of residual slag after magnetic separation for phosphorus recovery from hot metal dephosphorization slag, ISIJ Int., 50(2010), No. 1, p. 65. doi: 10.2355/isijinternational.50.65
|
[25] |
C. Li, J.T. Gao, F.Q. Wang, and Z.C. Guo, Enriching Fe-bearing and P-bearing phases from steelmaking slag melt by super gravity, Ironmaking Steelmaking, 45(2018), No. 1, p. 44. doi: 10.1080/03019233.2016.1236471
|
[26] |
C. Li, J.T. Gao, and Z.C. Guo, Separation of phosphorus- and iron-enriched phase from CaO–SiO2–FeO–MgO–P2O5 melt with super gravity, Metall. Mater. Trans. B, 47(2016), No. 3, p. 1516. doi: 10.1007/s11663-015-0494-8
|
[27] |
C. Li, J.T. Gao, and Z.C. Guo, Isothermal enrichment of P-concentrating phase from CaO–SiO2–FeO–MgO–P2O5 melt with super gravity, ISIJ Int., 56(2016), No. 5, p. 759. doi: 10.2355/isijinternational.ISIJINT-2015-633
|
[28] |
Y.Y. Zhang, Q.G. Xue, G. Wang, and J.S. Wang, Gasification and migration of phosphorus from high-phosphorus iron ore during carbothermal reduction, ISIJ Int., 58(2018), No. 12, p. 2219. doi: 10.2355/isijinternational.ISIJINT-2018-372
|
[29] |
M. Sugata, T. Sugiyama, and S.I. Kondo, Reduction of iron oxide contained in molten slags with solid carbon, ISIJ Int., 14(1974), No. 2, p. 88. doi: 10.2355/isijinternational1966.14.88
|
[30] |
S. Takeuchi, N. Sano, and Y. Matsushita, Separate recovery of iron and phosphorus from BOF slags by using Fe–Si alloys, Tetsu-to-Hagane, 66(1980), No. 14, p. 2050. doi: 10.2355/tetsutohagane1955.66.14_2050
|
[31] |
C.M. Du, X. Gao, S. Ueda, and S.Y. Kitamura, Separation and recovery of phosphorus from steelmaking slag via a selective leaching-chemical precipitation process, Hydrometallurgy, 189(2019), art. No. 105109. doi: 10.1016/j.hydromet.2019.105109
|
[32] |
T. Teratoko, N. Maruoka, H. Shibata, and S.Y. Kitamura, Dissolution behavior of dicalcium silicate and tricalcium phosphate solid solution and other phases of steelmaking slag in an aqueous solution, High Temp. Mater. Process., 31(2012), No. 4-5, p. 329. doi: 10.1515/htmp-2012-0032
|
[33] |
M. Numata, N. Maruoka, S.J. Kim, and S.Y. Kitamura, Fundamental experiment to extract phosphorous selectively from steelmaking slag by leaching, ISIJ Int., 54(2014), No. 8, p. 1983. doi: 10.2355/isijinternational.54.1983
|
[34] |
H.M. Xue, J. Li, Y.J. Xia, Y. Wan, L.J. Chen, and C.J. Lv, Mechanism of phosphorus enrichment in dephosphorization slag produced using the technology of integrating dephosphorization and decarburization, Metals, 11(2021), No. 2, art. No. 216. doi: 10.3390/met11020216
|
[35] |
J.M. Gonzalez, C.J. Penn, and S.J. Livingston, Utilization of steel slag in blind inlets for dissolved phosphorus removal, Water, 12(2020), No. 6, art. No. 1593. doi: 10.3390/w12061593
|
[36] |
G.F. Ye, J. Yang, R.H. Zhang, W.K. Yang, and H. Sun, Behavior of phosphorus enrichment in dephosphorization slag at low temperature and low basicity, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 66. doi: 10.1007/s12613-020-2036-x
|
[37] |
G.X. Li, J.S. Liang, J. Long, et al., A novel process for separation of magnetite and phosphorous phases from a CaO–SiO2–FeO–P2O5 slag, ISIJ Int., 62(2022), No. 7, p. 1556. doi: 10.2355/isijinternational.ISIJINT-2021-578
|
[38] |
D. Turnbull, Formation of crystal nuclei in liquid metals, J. Appl. Phys., 21(1950), No. 10, p. 1022. doi: 10.1063/1.1699435
|
[39] |
D. Turnbull, Under what conditions can a glass be formed? Contemp. Phys., 10(1969), No. 5, p. 473. doi: 10.1080/00107516908204405
|
[40] |
J.C. Fisher, J.H. Hollomon, and D. Turnbull, Rate of nucleation of solid particles in a subcooled liquid, Science, 109(1949), No. 2825, p. 168. doi: 10.1126/science.109.2825.168.b
|
[41] |
D.R. Uhlmann, A kinetic treatment of glass formation, J. Non-Cryst. Solids, 7(1972), No. 4, p. 337. doi: 10.1016/0022-3093(72)90269-4
|
[42] |
I. Barin, Thermochemical Data of Pure Substances, 3rd ed., VCH Verlagsgesellschaft mbH, Weinheim, 1995, p. 478.
|
[43] |
B. Li and Z.T. Sui, Glass crystallization kinetics of CaO–MgO–Fe2O3–Al2O3–SiO2 slags, Chin. J. Mater. Res., 13(1999), No. 4, p. 412.
|
[44] |
P.X. Zhang, Z.T. Sui, D.M. Luo, and R.J. Ma, Study on crystallization kinetics of component containing boron in MgO–B2O3–SiO2–Al2O3–CaO slag, Chin. J. Mater. Res., 9(1995), No. 1, p. 66.
|
[45] |
X. Zhang, B. Xie, J. Diao, and X.J. Li, Nucleation and growth kinetics of spinel crystals in vanadium slag, Ironmaking Steelmaking, 39(2012), No. 2, p. 147. doi: 10.1179/1743281211Y.0000000079
|
[46] |
X. Lan, J.T. Gao, Z.W. Wang, and Z.C. Guo, Viscosity of RE-bearing slag systems and kinetics of nucleation and growth for RE-phases, Ceram. Int., 48(2022), No. 9, p. 13304. doi: 10.1016/j.ceramint.2022.01.209
|
[47] |
K.C. Mills and S. Sridhar, Viscosities of ironmaking and steelmaking slags, Ironmaking Steelmaking, 26(1999), No. 4, p. 262. doi: 10.1179/030192399677121
|
[48] |
E. Bordes-Richard, Multicomponent oxides in selective oxidation of alkanes theoretical acidity versus selectivity, Top. Catal., 50(2008), p. 82. doi: 10.1007/s11244-008-9115-y
|
[49] |
X.F. Lei and X.X. Xue, Preparation, characterization and photocatalytic activity of sulfuric acid-modified titanium-bearing blast furnace slag, Trans. Nonferrous Met. Soc. China, 20(2010), No. 12, p. 2294. doi: 10.1016/S1003-6326(10)60643-7
|
[50] |
Y.B. Zong, D.Q. Cang, Y.P. Zhen, Y. Li, and H. Bai, Component modification of steel slag in air quenching process to improve grindability, Trans. Nonferrous Met. Soc. China, 19(2009), Suppl. 3, p. s834.
|
[51] |
G. Chen, J. Chen, J.H. Peng, and R.D. Wan, Green evaluation of microwave-assisted leaching process of high titanium slag on life cycle assessment, Trans. Nonferrous Met. Soc. China, 20(2010), Suppl. 1, p. s198.
|
[52] |
W.L. Wang, S.F. Dai, T.S. Zhang, Z.M. Li, and Y.J. Xie, Effect of isothermal and cooling rate on crystallization and viscosity of silicomanganese waste slag, Ceram. Int., 47(2021), No. 10, p. 13622. doi: 10.1016/j.ceramint.2021.01.221
|
[53] |
J.H. Wu, F.Q. Zhang, and G.H. Chen, A new method to estimate the ability of forming amorphous solids, Phys. Status Solidi A, 101(1987), No. 1, p. K1. doi: 10.1002/pssa.2211010131
|
[54] |
W.A. Johnson and R.F. Mehl, Reaction kinetics in processes of nucleation and growth, Trans. AIME, 135(1939), p. 416.
|