Cite this article as: |
Zhenguo Gao, Kai Yang, Zehao Zhao, Di Lan, Qian Zhou, Jiaoqiang Zhang, and Hongjing Wu, Design principles in MOF-derived electromagnetic wave absorption materials: Review and perspective, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 405-427. https://doi.org/10.1007/s12613-022-2555-8 |
Qian Zhou E-mail: zhouqian@xupt.edu.cn
Jiaoqiang Zhang E-mail: zhangjq@nwpu.edu.cn
Hongjing Wu E-mail: wuhongjing@nwpu.edu.cn
[1] |
A. Iqbal, F. Shahzad, K. Hantanasirisakul, et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene), Science, 369(2020), No. 6502, p. 446. doi: 10.1126/science.aba7977
|
[2] |
H.H. Zhao, X.Z. Xu, Y.H. Wang, et al., Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution, Small, 16(2020), No. 43, art. No. 2003407. doi: 10.1002/smll.202003407
|
[3] |
J.C. Shu, W.Q. Cao, and M.S. Cao, Diverse metal–organic framework architectures for electromagnetic absorbers and shielding, Adv. Funct. Mater., 31(2021), No. 23, art. No. 2100470. doi: 10.1002/adfm.202100470
|
[4] |
M.Q. Huang, L. Wang, W.B. You, and R.C. Che, Single zinc atoms anchored on MOF-derived N-doped carbon shell cooperated with magnetic core as an ultrawideband microwave absorber, Small, 17(2021), No. 30, art. No. e2101416. doi: 10.1002/smll.202101416
|
[5] |
H.H. Zhao, F.Y. Wang, L.R. Cui, X.Z. Xu, X.J. Han, and Y.C. Du, Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: A review, Nano-Micro Lett., 13(2021), No. 1, art. No. 208. doi: 10.1007/s40820-021-00734-z
|
[6] |
J.C. Shu, X.Y. Yang, X.R. Zhang, et al., Tailoring MOF-based materials to tune electromagnetic property for great microwave absorbers and devices, Carbon, 162(2020), p. 157. doi: 10.1016/j.carbon.2020.02.047
|
[7] |
K. Zhou, C. Zhang, Z. Xiong, et al., Template-directed growth of hierarchical MOF hybrid arrays for tactile sensor, Adv. Funct. Mater., 30(2020), No. 38, art. No. 2001296. doi: 10.1002/adfm.202001296
|
[8] |
X. Zhang, J. Qiao, Y.Y. Jiang, et al., Carbon-based MOF derivatives: Emerging efficient electromagnetic wave absorption agents, Nano-Micro Lett., 13(2021), No. 1, art. No. 135. doi: 10.1007/s40820-021-00658-8
|
[9] |
C. Zhang, M.J. Xu, Z.X. Yang, M.H. Zhu, J. Gao, and Y.F. Han, Uncovering the electronic effects of zinc on the structure of Fe5C2–ZnO catalysts for CO2 hydrogenation to linear α-olefins, Appl. Catal. B Environ., 295(2021), art. No. 120287. doi: 10.1016/j.apcatb.2021.120287
|
[10] |
L.L. Liang, W.H. Gu, Y. Wu, et al., Heterointerface engineering in electromagnetic absorbers: New insights and opportunities, Adv. Mater., 34(2022), No. 4, art. No. e2106195. doi: 10.1002/adma.202106195
|
[11] |
Q. Li, Z. Zhang, L.P. Qi, et al., Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures, Adv. Sci., 6(2019), No. 8, art. No. 1801057. doi: 10.1002/advs.201801057
|
[12] |
L.X. Huang, Y.P. Duan, X.H. Dai, et al., Bioinspired metamaterials: Multibands electromagnetic wave adaptability and hydrophobic characteristics, Small, 15(2019), No. 40, art. No. e1902730. doi: 10.1002/smll.201902730
|
[13] |
H.L. Lv, Z.H. Yang, P.L. Wang, et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device, Adv. Mater., 30(2018), No. 15, art. No. e1706343. doi: 10.1002/adma.201706343
|
[14] |
Y. Cheng, H.Q. Zhao, H.L. Lv, T.F. Shi, G.B. Ji, and Y.L. Hou, Lightweight and flexible cotton aerogel composites for electromagnetic absorption and shielding applications, Adv. Electron. Mater., 6(2020), No. 1, art. No. 1900796. doi: 10.1002/aelm.201900796
|
[15] |
X.Q. Xu, F.T. Ran, Z.M. Fan, et al., Bimetallic metal–organic framework-derived pomegranate-like nanoclusters coupled with CoNi-doped graphene for strong wideband microwave absorption, ACS Appl. Mater. Interfaces, 12(2020), No. 15, p. 17870. doi: 10.1021/acsami.0c01572
|
[16] |
P. Miao, Z. Yu, W.X. Chen, et al., Synergetic dielectric and magnetic losses of a core–shell Co/MnO/C nano complex toward highly efficient microwave absorption, Inorg. Chem., 61(2022), No. 3, p. 1787. doi: 10.1021/acs.inorgchem.1c03749
|
[17] |
W. Wang, H. Zhang, Y.Z. Zhao, et al., A novel MOF-drived self-decomposition strategy for CoO@N/C–Co/Ni–NiCo2O4 multi-heterostructure composite as high-performance electromagnetic wave absorbing materials, Chem. Eng. J., 426(2021), art. No. 131667. doi: 10.1016/j.cej.2021.131667
|
[18] |
Y.H. Cui, Z.H. Liu, X.X. Li, et al., MOF-derived yolk-shell Co@ZnO/Ni@NC nanocage: Structure control and electromagnetic wave absorption performance, J. Colloid Interface Sci., 600(2021), p. 99. doi: 10.1016/j.jcis.2021.05.015
|
[19] |
L. Wang, M.Q. Huang, X. Qian, et al., Confined magnetic-dielectric balance boosted electromagnetic wave absorption, Small, 17(2021), No. 30, art. No. e2100970. doi: 10.1002/smll.202100970
|
[20] |
H. Furukawa, U. Müller, O.M. Yaghi, “Heterogeneity within order” in metal–organic frameworks, Angew. Chem. Int. Ed., 54(2015), pp. 3417-3430. doi: 10.1002/anie.201410252
|
[21] |
Z.G. Gao, J.Q. Zhang, S.J. Zhang, J. Wang, and Y.H. Song, Cationic etching of ZIF-67 derived LaCoO3/Co3O4 as high-efficiency electromagnetic absorbents, Chem. Eng. J., 421(2021), art. No. 127829. doi: 10.1016/j.cej.2020.127829
|
[22] |
P. Miao, R. Zhou, K.J. Chen, J. Liang, Q.F. Ban, and J. Kong, Tunable electromagnetic wave absorption of supramolecular isomer-derived nanocomposites with different morphology, Adv. Mater. Interfaces, 7(2020), No. 4, art. No. 1901820. doi: 10.1002/admi.201901820
|
[23] |
W.B. Li, J. Chen, and P. Gao, MOFs-derived hollow copper-based sulfides for optimized electromagnetic behaviors, J. Colloid Interface Sci., 606(2022), p. 719. doi: 10.1016/j.jcis.2021.08.019
|
[24] |
X. Zhang, J. Qiao, C. Liu, et al., A MOF-derived ZrO2/C nanocomposite for efficient electromagnetic wave absorption, Inorg. Chem. Front., 7(2020), No. 2, p. 385. doi: 10.1039/C9QI01259A
|
[25] |
J. Qiao, X. Zhang, C. Liu, et al., Non-magnetic bimetallic MOF-derived porous carbon-wrapped TiO2/ZrTiO4 composites for efficient electromagnetic wave absorption, Nano-Micro Lett., 13(2021), No. 1, art. No. 75. doi: 10.1007/s40820-021-00606-6
|
[26] |
X.B. Liu, T.T. Liang, R.T. Zhang, et al., Iron-based metal–organic frameworks in drug delivery and biomedicine, ACS Appl. Mater. Interfaces, 13(2021), No. 8, p. 9643. doi: 10.1021/acsami.0c21486
|
[27] |
Y. Lü, Y.T. Wang, H.L. Li, et al., MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties, ACS Appl. Mater. Interfaces, 7(2015), No. 24, p. 13604. doi: 10.1021/acsami.5b03177
|
[28] |
H.F. Qiu, X.Y. Zhu, P. Chen, Y.Z. Chen, G.Z. Chen, and W.X. Min, Construction of core–shell structured ZnO/C@PPy composite as high-performance dielectric electromagnetic wave absorber, J. Magn. Magn. Mater., 543(2022), art. No. 168604. doi: 10.1016/j.jmmm.2021.168604
|
[29] |
H.H. Zhao, X.Z. Xu, D.G. Fan, et al., Anchoring porous carbon nanoparticles on carbon nanotubes as a high-performance composite with a unique core-sheath structure for electromagnetic pollution precaution, J. Mater. Chem. A, 9(2021), No. 39, p. 22489. doi: 10.1039/D1TA06147J
|
[30] |
H.F. Qiu, X.Y. Zhu, P. Chen, N. Li, and X.L. Zhu, Synthesis of ternary core–shell structured ZnOC@CoC@PAN for high-performance electromagnetic absorption, J. Alloys Compd., 868(2021), art. No. 159260. doi: 10.1016/j.jallcom.2021.159260
|
[31] |
T. Gao, Z.Y. Zhu, Y.X. Li, et al., Highly efficient electromagnetic absorption on ZnN4-based MOFs-derived carbon composites, Carbon, 177(2021), p. 44. doi: 10.1016/j.carbon.2021.02.061
|
[32] |
J.X. Wang, J.F. Yang, J. Yang, and H. Zhang, Design of novel CNT/RGO/ZIF-8 ternary hybrid structure for lightweight and highly effective microwave absorption, Nanotechnology, 31(2020), No. 41, art. No. 414001. doi: 10.1088/1361-6528/ab9e93
|
[33] |
X.K. Wang, P.P. Zhou, G.H. Qiu, et al., Excellent electromagnetic wave absorption properties of porous core-shell CoO/Co@C nanocomposites derived from a needle-shaped Co(OH)2@ZIF-67 template, J. Alloys Compd., 842(2020), art. No. 155807. doi: 10.1016/j.jallcom.2020.155807
|
[34] |
Y. Fei, M. Liang, Y. Chen, and H.W. Zou, Sandwich-like magnetic graphene papers prepared with MOF-derived Fe3O4–C for absorption-dominated electromagnetic interference shielding, Ind. Eng. Chem. Res., 59(2020), No. 1, p. 154. doi: 10.1021/acs.iecr.9b04416
|
[35] |
W.T. Wu, R. Xu, Y.M. Zhou, et al., Biomimetic 3D coral reef-like GO@TiO2 composite framework inlaid with TiO2–C for low-frequency electromagnetic wave absorption, Carbon, 178(2021), p. 144. doi: 10.1016/j.carbon.2020.11.085
|
[36] |
N. Liu, J.X. Wu, F.H. Fei, et al., Ibuprofen degradation by a synergism of facet-controlled MIL-88B(Fe) and persulfate under simulated visible light, J. Colloid Interface Sci., 612(2022), p. 1. doi: 10.1016/j.jcis.2021.12.142
|
[37] |
X.Y. Li, Y.H. Pi, Q.B. Xia, Z. Li, and J. Xiao, TiO2 encapsulated in Salicylaldehyde-NH2-MIL-101(Cr) for enhanced visible light-driven photodegradation of MB, Appl. Catal. B, 191(2016), p. 192. doi: 10.1016/j.apcatb.2016.03.034
|
[38] |
F.G. Cirujano and A. Dhakshinamoorthy, Engineering of active sites in metal–organic frameworks for biodiesel production, Adv. Sustainable Syst., 5(2021), No. 8, art. No. 2100101. doi: 10.1002/adsu.202100101
|
[39] |
R.D. Guo, D. Su, F. Chen, et al., Hollow beaded Fe3C/N-doped carbon fibers toward broadband microwave absorption, ACS Appl. Mater. Interfaces, 14(2022), No. 2, p. 3084. doi: 10.1021/acsami.1c21272
|
[40] |
V.N. le, T.K. Vo, J.H. Lee, et al., A novel approach to prepare Cu(I)Zn@MIL-100(Fe) adsorbent with high CO adsorption capacity, CO/CO2 selectivity and stability via controlled host-guest redox reaction, Chem. Eng. J., 404(2021), art. No. 126492. doi: 10.1016/j.cej.2020.126492
|
[41] |
S.S. Peng, S.Y. Wang, G.Z. Hao, et al., Preparation of magnetic flower-like carbon-matrix composites with efficient electromagnetic wave absorption properties by carbonization of MIL-101(Fe), J. Magn. Magn. Mater., 487(2019), art. No. 165306. doi: 10.1016/j.jmmm.2019.165306
|
[42] |
J. Zhou, D. Liu, Y. Xiong, and Y. Akinay, A novel approach to prepare polyaniline/Polypyrrole@Cu-BTC/NH2-MIL-101(Fe) MOFs for electromagnetic wave absorption, Ceram. Int., 46(2020), No. 12, p. 19758. doi: 10.1016/j.ceramint.2020.05.006
|
[43] |
T.G. Zhu, Y. Sun, Y.J. Wang, et al., A MOF-driven porous iron with high dielectric loss and excellent microwave absorption properties, J. Mater. Sci. Mater. Electron., 31(2020), No. 9, p. 6843. doi: 10.1007/s10854-020-03244-7
|
[44] |
J.N. Ma, W. Liu, X.H. Liang, et al., Nanoporous TiO2/C composites synthesized from directly pyrolysis of a Ti-based MOFs MIL-125(Ti) for efficient microwave absorption, J. Alloys Compd., 728(2017), p. 138. doi: 10.1016/j.jallcom.2017.08.274
|
[45] |
P. Ge, S. Li, H. Shuai, et al., Ultrafast sodium full batteries derived from X–Fe (X = Co, Ni, Mn) Prussian blue analogs, Adv. Mater., 31(2019), No. 3, art. No. e1806092. doi: 10.1002/adma.201806092
|
[46] |
W. Liu, P.T. Duan, H.W. Xiong, et al., Multicomponent Fe-based composites derived from the oxidation and reduction of Prussian blue towards efficient electromagnetic wave absorption, J. Mater. Chem. C, 9(2021), No. 16, p. 5505. doi: 10.1039/D1TC00455G
|
[47] |
K. Peng, R.Q. Wang, H. Chen, et al., Prussian blue derived Fe/C anchoring on multiwalled carbon nanotubes forming chain-like efficient electromagnetic wave absorbent, J. Electron. Mater., 49(2020), No. 11, p. 6631. doi: 10.1007/s11664-020-08402-5
|
[48] |
P.S. Yi, X.F. Zhang, L.Q. Jin, et al., Regulating pyrolysis strategy to construct CNTs-linked porous cubic Prussian blue analogue derivatives for lightweight and broadband microwave absorption, Chem. Eng. J., 430(2022), art. No. 132879. doi: 10.1016/j.cej.2021.132879
|
[49] |
F.Y. Wang, N. Wang, X.J. Han, et al., Core–shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption, Carbon, 145(2019), p. 701. doi: 10.1016/j.carbon.2019.01.082
|
[50] |
J.S. Gao, H.H. Wang, Y. Zhou, Z.M. Liu, and Y. He, Self-template and in situ synthesis strategy to construct MnO2/Mn3O4@Ni–Co/GC nanocubes for efficient microwave absorption properties, J. Alloys Compd., 892(2022), art. No. 162151. doi: 10.1016/j.jallcom.2021.162151
|
[51] |
P. Miao, J.X. Chen, Y.S. Tang, K.J. Chen, and J. Kong, Highly efficient and broad electromagnetic wave absorbers tuned via topology-controllable metal-organic frameworks, Sci. China Mater., 63(2020), No. 10, p. 2050. doi: 10.1007/s40843-020-1333-9
|
[52] |
K.F. Wang, Y.J. Chen, R. Tian, et al., Porous Co–C core–shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance, ACS Appl. Mater. Interfaces, 10(2018), No. 13, p. 11333. doi: 10.1021/acsami.8b00965
|
[53] |
X.K. Wang, Y.K. Guan, R.R. Zhang, et al., Facile synthesis of cobalt nanoparticles embedded in a rod-like porous carbon matrix with excellent electromagnetic wave absorption performance, Ceram. Int., 47(2021), No. 1, p. 643. doi: 10.1016/j.ceramint.2020.08.172
|
[54] |
H.L. Yang, Z.J. Shen, H.L. Peng, Z.Q. Xiong, C.B. Liu, and Y. Xie, 1D–3D mixed-dimensional MnO2@nanoporous carbon composites derived from Mn-metal organic framework with full-band ultra-strong microwave absorption response, Chem. Eng. J., 417(2021), art. No. 128087. doi: 10.1016/j.cej.2020.128087
|
[55] |
L. Wang, X. Wen, J. Li, P. Zeng, Y. Song, and H. Yu, Roles of defects and linker exchange in phosphate adsorption on UiO-66 type metal organic frameworks: Influence of phosphate concentration, Chem. Eng. J., 405(2021), art. No. 126681. doi: 10.1016/j.cej.2020.126681
|
[56] |
X. Zhang, J. Qiao, J.B. Zhao, et al., High-efficiency electromagnetic wave absorption of cobalt-decorated NH2-UIO-66-derived porous ZrO2/C, ACS Appl. Mater. Interfaces, 11(2019), No. 39, p. 35959. doi: 10.1021/acsami.9b10168
|
[57] |
G. Wu, Z. Guo, Q. Zhang, et al., Refined band structure plus enhanced phonon scattering realizes thermoelectric performance optimization in CuI–Mn codoped SnTe, J. Mater. Chem. A, 9(2021), No. 22, p. 13065. doi: 10.1039/D1TA03360C
|
[58] |
J.B. Chen, J. Zheng, F. Wang, Q.Q. Huang, and G.B. Ji, Carbon fibers embedded with FeIII-MOF-5-derived composites for enhanced microwave absorption, Carbon, 174(2021), p. 509. doi: 10.1016/j.carbon.2020.12.077
|
[59] |
W. Liu, L. Liu, G.B. Ji, et al., Composition design and structural characterization of MOF-derived composites with controllable electromagnetic properties, ACS Sustainable Chem. Eng., 5(2017), No. 9, p. 7961. doi: 10.1021/acssuschemeng.7b01514
|
[60] |
W. Hou, M. Chen, C. Chen, Y. Wang, and Y. Xu, Increased production of H2 under visible light by packing CdS in a Ti, Zr-Based metal organic framework, J. Colloid Interface Sci., 604(2021), p. 310. doi: 10.1016/j.jcis.2021.06.150
|
[61] |
Y. Wang, W.Z. Zhang, X.M. Wu, C.Y. Luo, T. Liang, and G. Yan, Metal-organic framework nanoparticles decorated with graphene: A high-performance electromagnetic wave absorber, J. Magn. Magn. Mater., 416(2016), p. 226. doi: 10.1016/j.jmmm.2016.04.093
|
[62] |
H.L. Peng, X. Zhang, H.L. Yang, Z.Q. Xiong, C.B. Liu, and Y. Xie, Fabrication of core-shell nanoporous carbon@chiral polyschiff base iron(II) composites for high-performance electromagnetic wave attenuationin the low-frequency, J. Alloys Compd., 850(2021), art. No. 156816. doi: 10.1016/j.jallcom.2020.156816
|
[63] |
J. Yan, Y. Huang, Y.H. Yan, L. Ding, and P.B. Liu, High-performance electromagnetic wave absorbers based on two kinds of nickel-based MOF-derived Ni@C microspheres, ACS Appl. Mater. Interfaces, 11(2019), No. 43, p. 40781. doi: 10.1021/acsami.9b12850
|
[64] |
H.C. Niu, P.X. Liu, F.Z. Qin, X.L. Liu, and Y. Akinay, PEDOT coated Cu-BTC metal–organic frameworks decorated with Fe3O4 nanoparticles and their enhanced electromagnetic wave absorption, Mater. Chem. Phys., 253(2020), art. No. 123458. doi: 10.1016/j.matchemphys.2020.123458
|
[65] |
J.Y. Cheng, H.B. Zhang, H.H. Wang, et al., Tailoring self-polarization of bimetallic organic frameworks with multiple polar units toward high-performance consecutive multi-band electromagnetic wave absorption at gigahertz, Adv. Funct. Mater., 32(2022), No. 24, art. No. 2201129. doi: 10.1002/adfm.202201129
|
[66] |
L. Wang, B. Wen, H.B. Yang, Y. Qiu, and N.R. He, Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber, Composites Part A, 135(2020), art. No. 105958. doi: 10.1016/j.compositesa.2020.105958
|
[67] |
S.L. Zhao, C.H. Tan, C.T. He, et al., Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction, Nat. Energy, 5(2020), No. 11, p. 881. doi: 10.1038/s41560-020-00709-1
|
[68] |
Z.H. Zhao, K.C. Kou, L.M. Zhang, and H.J. Wu, Optimal particle distribution induced interfacial polarization in bouquet-like hierarchical composites for electromagnetic wave absorption, Carbon, 186(2022), p. 323. doi: 10.1016/j.carbon.2021.10.052
|
[69] |
L. Wang, B. Wen, Y. Qiu, and H.B. Yang, Structurally designed hierarchical carbon nanotubes vertically anchored on elliptical-like carbon nanosheets with enhanced conduction loss as high-performance electromagnetic wave absorbent, Synth. Met., 261(2020), art. No. 116301. doi: 10.1016/j.synthmet.2020.116301
|
[70] |
J. Su, N. Xu, R. Murase, et al., Persistent radical tetrathiafulvalene-based 2D metal-organic frameworks and their application in efficient photothermal conversion, Angew. Chem. Int. Ed Engl., 60(2021), No. 9, p. 4789. doi: 10.1002/anie.202013811
|
[71] |
K. Jayaramulu, D.P. Dubal, A. Schneemann, V. Ranc, C. Perez-Reyes, J. Stráská, Š. Kment, M. Otyepka, R.A. Fischer, and R. Zbořil, Shape-assisted 2D MOF/graphene derived hybrids as exceptional lithium-ion battery electrodes, Adv. Funct. Mater., 29(2019), No. 38, art. No. 1902539. doi: 10.1002/adfm.201902539
|
[72] |
J.C. Zhang, T.C. Zhang, D.B. Yu, K.S. Xiao, and Y. Hong, Transition from ZIF-L-Co to ZIF-67: A new insight into the structural evolution of zeolitic imidazolate frameworks (ZIFs) in aqueous systems, CrystEngComm, 17(2015), No. 43, p. 8212. doi: 10.1039/C5CE01531F
|
[73] |
X.Q. Xu, F.T. Ran, Z.M. Fan, et al., Cactus-inspired bimetallic metal-organic framework-derived 1D–2D hierarchical Co/N-decorated carbon architecture toward enhanced electromagnetic wave absorbing performance, ACS Appl. Mater. Interfaces, 11(2019), No. 14, p. 13564. doi: 10.1021/acsami.9b00356
|
[74] |
G. Liu, J.Q. Tu, C. Wu, et al., High-yield two-dimensional metal–organic framework derivatives for wideband electromagnetic wave absorption, ACS Appl. Mater. Interfaces, 13(2021), No. 17, p. 20459. doi: 10.1021/acsami.1c00281
|
[75] |
Y. Qiu, H.B. Yang, Y. Cheng, and Y. Lin, MOFs derived flower-like nickel and carbon composites with controllable structure toward efficient microwave absorption, Composites Part A, 154(2022), art. No. 106772. doi: 10.1016/j.compositesa.2021.106772
|
[76] |
J.W. Fang, Y. Ma, Z.Y. Zhang, et al., Metal–organic framework-derived carbon/carbon nanotubes mediate impedance matching for strong microwave absorption at fairly low temperatures, ACS Appl. Mater. Interfaces, 13(2021), No. 28, p. 33496. doi: 10.1021/acsami.1c07792
|
[77] |
Y. Wang, W.Z. Zhang, X.M. Wu, et al., Conducting polymer coated metal-organic framework nanoparticles: Facile synthesis and enhanced electromagnetic absorption properties, Synth. Met., 228(2017), p. 18. doi: 10.1016/j.synthmet.2017.04.009
|
[78] |
H.Y. Fan, Z.J. Yao, J.T. Zhou, et al., Enhanced microwave absorption of epoxy composite by constructing 3D Co–C–MWCNTs derived from metal organic frameworks, J. Mater. Sci., 56(2021), No. 2, p. 1426. doi: 10.1007/s10853-020-05365-0
|
[79] |
L. Wang, B. Wen, X.Y. Bai, C. Liu, and H.B. Yang, Facile and green approach to the synthesis of zeolitic imidazolate framework nanosheet-derived 2D Co/C composites for a lightweight and highly efficient microwave absorber, J. Colloid Interface Sci., 540(2019), p. 30. doi: 10.1016/j.jcis.2018.12.111
|
[80] |
V. Ganesan, S. Lim, and J. Kim, Hierarchical nanoboxes composed of Co9S8–MoS2 nanosheets as efficient electrocatalysts for the hydrogen evolution reaction, Chem. Asian J., 13(2018), No. 4, p. 413. doi: 10.1002/asia.201701536
|
[81] |
M.Q. Huang, L. Wang, K. Pei, et al., Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic–dielectric synergy toward strong microwave absorption, Small, 16(2020), No. 14, art. No. 2000158. doi: 10.1002/smll.202000158
|
[82] |
Y.J. Liu, Z.J. Yao, J.T. Zhou, L.Q. Jin, B. Wei, and X.X. He, Facile synthesis of MOF-derived concave cube nanocomposite by self-templated toward lightweight and wideband microwave absorption, Carbon, 186(2022), p. 574. doi: 10.1016/j.carbon.2021.10.044
|
[83] |
Z.N. Li, X.J. Han, Y. Ma, et al., MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance, ACS Sustainable Chem. Eng., 6(2018), No. 7, p. 8904. doi: 10.1021/acssuschemeng.8b01270
|
[84] |
Y.T. Zhu, X.M. Guan, Z.H. Yang, and X. Xu, Regulation of component transformation in MOF-derived vanadium oxide@C spindles for high-performance electromagnetic wave absorption, J. Alloys Compd., 865(2021), art. No. 158886. doi: 10.1016/j.jallcom.2021.158886
|
[85] |
X.Q. Xu, F.T. Ran, H. Lai, et al., In situ confined bimetallic metal–organic framework derived nanostructure within 3D interconnected bamboo-like carbon nanotube networks for boosting electromagnetic wave absorbing performances, ACS Appl. Mater. Interfaces, 11(2019), No. 39, p. 35999. doi: 10.1021/acsami.9b14754
|
[86] |
Z.J. Shen, H.L. Yang, C.B. Liu, E.W. Guo, S.Y. Huang, and Z.Q. Xiong, Polymetallic MOF-derived corn-like composites for magnetic-dielectric balance to facilitate broadband electromagnetic wave absorption, Carbon, 185(2021), p. 464. doi: 10.1016/j.carbon.2021.09.041
|
[87] |
Y. Xiong, L.L. Xu, C.X. Yang, Q.F. Sun, and X.J. Xu, Implanting FeCo/C nanocages with tunable electromagnetic parameters in anisotropic wood carbon aerogels for efficient microwave absorption, J. Mater. Chem., 8(2020), p. 18863. doi: 10.1039/D0TA05540A
|
[88] |
J.T. Yuan, Q.C. Liu, S.K. Li, et al., Metal organic framework (MOF)-derived carbonaceous Co3O4/Co microframes anchored on RGO with enhanced electromagnetic wave absorption performances, Synth. Met., 228(2017), p. 32. doi: 10.1016/j.synthmet.2017.03.020
|
[89] |
P. Miao, J.Y. Yang, Y.K. Liu, H.Z. Xie, K.J. Chen, and J. Kong, Emerging perovskite electromagnetic wave absorbers from Bi-metal–organic frameworks, Cryst. Growth Des., 20(2020), p. 4818. doi: 10.1021/acs.cgd.0c00598
|
[90] |
F.Z. Zeng, L. Li, C.Y. Liu, and Z. Lin, Hollow CoS2 nanobubble prisms derived from ZIF-67 through facile two-step self-engaged method for electromagnetic wave absorption, ChemistrySelect, 6(2021), No. 17, p. 4344. doi: 10.1002/slct.202100792
|
[91] |
C.C. Hou, L.L. Zou, Y. Wang, and Q. Xu, MOF-mediated fabrication of a porous 3D superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanoparticles for efficient electrocatalysis and zinc–air batteries, Angew. Chem. Int. Ed., 132(2020), No. 48, p. 21544. doi: 10.1002/ange.202011347
|
[92] |
Z.H. Zhao, K.C. Kou, and H.J. Wu, 2-Methylimidazole-mediated hierarchical Co3O4/N-doped carbon/short-carbon-fiber composite as high-performance electromagnetic wave absorber, J. Colloid Interface Sci., 574(2020), p. 1. doi: 10.1016/j.jcis.2020.04.037
|
[93] |
J. Yan, Y. Huang, X.P. Han, X.G. Gao, and P.B. Liu, Metal organic framework (ZIF-67)-derived hollow CoS2/N-doped carbon nanotube composites for extraordinary electromagnetic wave absorption, Composites Part B, 163(2019), p. 67. doi: 10.1016/j.compositesb.2018.11.008
|
[94] |
Z. Li, X. Hu, Z. Shi, J. Lu, and Z. Wang, MOF-derived iron sulfide nanocomposite with sulfur-doped carbon shell as a promising anode material for high-performance lithium-ion batteries, J. Alloys Compd., 868(2021), p. 159110. doi: 10.1016/j.jallcom.2021.159110
|
[95] |
D.M. Xu, Y.F. Yang, K. Le, et al., Bifunctional Cu9S5/C octahedral composites for electromagnetic wave absorption and supercapacitor applications, Chem. Eng. J., 417(2021), art. No. 129350. doi: 10.1016/j.cej.2021.129350
|
[96] |
S. Bera, A. Chakraborty, S. Karak, et al., Multistimuli-responsive interconvertible low-molecular weight metallohydrogels and the in situ entrapment of CdS quantum dots therein, Chem. Mater., 30(2018), No. 14, p. 4755. doi: 10.1021/acs.chemmater.8b01698
|
[97] |
G.L. Song, K.K. Yang, L.X. Gai, et al., ZIF-67/CMC-derived 3D N-doped hierarchical porous carbon with in situ encapsulated bimetallic sulfide and Ni NPs for synergistic microwave absorption, Composites Part A, 149(2021), art. No. 106584. doi: 10.1016/j.compositesa.2021.106584
|
[98] |
Z.Q. Yan, Z.H. Sun, A.R. Li, et al., Vacancy and architecture engineering of porous FeP nanorods for achieving superior Li+ storage, Chem. Eng. J., 429(2022), art. No. 132249. doi: 10.1016/j.cej.2021.132249
|
[99] |
W.J. Ruan, C.P. Mu, B.C. Wang, et al., Metal–organic framework derived cobalt phosphosulfide with ultrahigh microwave absorption properties, Nanotechnology, 29(2018), No. 40, art. No. 405703. doi: 10.1088/1361-6528/aad39b
|
[100] |
J. Ouyang, Z.L. He, Y. Zhang, H.M. Yang, and Q.H. Zhao, Trimetallic FeCoNi@C nanocomposite hollow spheres derived from metal–organic frameworks with superior electromagnetic wave absorption ability, ACS Appl. Mater. Interfaces, 11(2019), No. 42, p. 39304. doi: 10.1021/acsami.9b11430
|
[101] |
Q. Liao, M. He, Y.M. Zhou, et al., Highly cuboid-shaped heterobimetallic metal–organic frameworks derived from porous Co/ZnO/C microrods with improved electromagnetic wave absorption capabilities, ACS Appl. Mater. Interfaces, 10(2018), No. 34, p. 29136. doi: 10.1021/acsami.8b09093
|
[102] |
X.Y. Zhang, Z.R. Jia, F. Zhang, et al., MOF-derived NiFe2S4/Porous carbon composites as electromagnetic wave absorber, J. Colloid Interface Sci., 610(2022), p. 610. doi: 10.1016/j.jcis.2021.11.110
|
[103] |
S.J. Zhang, Z.R. Jia, B. Cheng, Z.W. Zhao, F. Lu, and G.L. Wu, Recent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: A mini-review, Adv. Compos. Hybrid Mater., 5(2022), No. 3, p. 2440. doi: 10.1007/s42114-022-00458-7
|
[104] |
L. Wang, X.F. Yu, X. Li, J. Zhang, M. Wang, and R.C. Che, MOF-derived yolk–shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption, Chem. Eng. J., 383(2020), art. No. 123099. doi: 10.1016/j.cej.2019.123099
|
[105] |
Y. Qiu, H.B. Yang, L. Ma, et al., In situ-derived carbon nanotube-decorated nitrogen-doped carbon-coated nickel hybrids from MOF/melamine for efficient electromagnetic wave absorption, J. Colloid Interface Sci., 581(2021), p. 783. doi: 10.1016/j.jcis.2020.07.151
|
[106] |
Z.G. Gao, D. Lan, L.M. Zhang, and H.J. Wu, Simultaneous manipulation of interfacial and defects polarization toward Zn/Co phase and ion hybrids for electromagnetic wave absorption, Adv. Funct. Mater., 31(2021), No. 50, art. No. 2106677. doi: 10.1002/adfm.202106677
|
[107] |
Z.G. Gao, Z.H. Ma, D. Lan, et al., Synergistic polarization loss of MoS2-based multiphase solid solution for electromagnetic wave absorption, Adv. Funct. Mater., 32(2022), No. 18, art. No. 2112294. doi: 10.1002/adfm.202112294
|
[108] |
S.J.G. Gift and B. Maundy, Semiconductor diode, [in] Electronic Circuit Design and Application, Springer International Publishing, Cham, 2021, p. 1.
|
[109] |
X.F. Zhang, L.L. Xu, J.T. Zhou, et al., Liquid metal-derived two-dimensional layered double oxide nanoplatelet-based coatings for electromagnetic wave absorption, ACS Appl. Nano Mater., 4(2021), No. 9, p. 9200. doi: 10.1021/acsanm.1c01729
|
[110] |
K.N. Alekseev, P. Pietiläinen, J. Isohätälä, A.A. Zharov, and F.V. Kusmartsev, Chaos and rectification of electromagnetic wave in a lateral semiconductor superlattice, Europhys. Lett., 70(2005), No. 3, p. 292. doi: 10.1209/epl/i2004-10502-1
|
[111] |
L.N. Huang, C.G. Chen, X.Y. Huang, S.C. Ruan, and Y.J. Zeng, Enhanced electromagnetic absorbing performance of MOF-derived Ni/NiO/Cu@C composites, Composites Part B, 164(2019), p. 583. doi: 10.1016/j.compositesb.2019.01.081
|
[112] |
R. Yang, J.Q. Yuan, C.H. Yu, et al., Efficient electromagnetic wave absorption by SiC/Ni/NiO/C nanocomposites, J. Alloys Compd., 816(2020), art. No. 152519. doi: 10.1016/j.jallcom.2019.152519
|
[113] |
Y.Z. Jiao, S.Y. Cheng, F. Wu, et al., MOF−Guest complex derived Cu/C nanocomposites with multiple heterogeneous interfaces for excellent electromagnetic waves absorption, Composites Part B, 211(2021), art. No. 108643. doi: 10.1016/j.compositesb.2021.108643
|
[114] |
Q.V. Thi, S. Park, J. Jeong, et al., A nanostructure of reduced graphene oxide and NiO/ZnO hollow spheres toward attenuation of electromagnetic waves, Mater. Chem. Phys., 266(2021), art. No. 124530. doi: 10.1016/j.matchemphys.2021.124530
|
[115] |
M. del Rio, J.C. Grimalt Escarabajal, G. Turnes Palomino, and C. Palomino Cabello, Zinc/Iron mixed-metal MOF-74 derived magnetic carbon nanorods for the enhanced removal of organic pollutants from water, Chem. Eng. J., 428(2022), art. No. 131147. doi: 10.1016/j.cej.2021.131147
|
[116] |
M.L. Dong, M.Y. Peng, W. Wei, H.J. Xu, C.T. Liu, and C.Y. Shen, Improved microwave absorption performance of double helical C/Co@CNT nanocomposite with hierarchical structures, J. Mater. Chem. C, 9(2021), No. 6, p. 2178. doi: 10.1039/D0TC05811D
|
[117] |
L.N. Jin, X.S. Zhao, J. Ye, X.Y. Qian, and M.D. Dong, MOF-derived magnetic Ni-carbon submicrorods for the catalytic reduction of 4-nitrophenol, Catal. Commun., 107(2018), p. 43. doi: 10.1016/j.catcom.2017.11.014
|
[118] |
Q. Wu, B.L. Wang, Y.G. Fu, Z.F. Zhang, P.F. Yan, and T. Liu, MOF-derived Co/CoO particles prepared by low temperature reduction for microwave absorption, Chem. Eng. J., 410(2021), art. No. 128378. doi: 10.1016/j.cej.2020.128378
|
[119] |
X.Y. Xiao, W.J. zhu, Z. Tan, et al., Ultra-small Co/CNTs nanohybrid from metal organic framework with highly efficient microwave absorption, Composites Part B, 152(2018), p. 316. doi: 10.1016/j.compositesb.2018.08.109
|
[120] |
H.C. Wang, L. Xiang, W. Wei, et al., Efficient and lightweight electromagnetic wave absorber derived from metal organic framework-encapsulated cobalt nanoparticles, ACS Appl. Mater. Interfaces, 9(2017), No. 48, p. 42102. doi: 10.1021/acsami.7b13796
|
[121] |
N.N. Wu, B.B. Zhao, J.Y. Liu, et al., MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials, Adv. Compos. Hybrid Mater., 4(2021), No. 3, p. 707. doi: 10.1007/s42114-021-00307-z
|
[122] |
X. Li, Z.L. Wang, Z. Xiang, et al., Biconical prisms Ni@C composites derived from metal-organic frameworks with an enhanced electromagnetic wave absorption, Carbon, 184(2021), p. 115. doi: 10.1016/j.carbon.2021.08.025
|
[123] |
J.Q. Tao, L.L. Xu, L. Wan, et al., Cubic-like Co/NC composites derived from ZIF-67 with a dual control strategy of size and graphitization degree for microwave absorption, Nanoscale, 13(2021), No. 30, p. 12896. doi: 10.1039/D1NR03450B
|
[124] |
L.F. Lyu, S.N. Zheng, F.L. Wang, Y. Liu, and J.R. Liu, High-performance microwave absorption of MOF-derived Co3O4@N-doped carbon anchored on carbon foam, J. Colloid Interface Sci., 602(2021), p. 197. doi: 10.1016/j.jcis.2021.05.184
|
[125] |
B. Wen, H.B. Yang, Y. Lin, L. Ma, Y. Qiu, F.F. Hu, and Y.N. Zheng, Synthesis of core–shell Co@S-doped carbon@ mesoporous N-doped carbon nanosheets with a hierarchically porous structure for strong electromagnetic wave absorption, J. Mater. Chem. A, 9(2021), No. 6, p. 3567. doi: 10.1039/D0TA09393A
|
[126] |
B. Wen, H.B. Yang, Y. Lin, L. Ma, Y. Qiu, and F.F. Hu, Controlling the heterogeneous interfaces of S, Co co-doped porous carbon nanosheets for enhancing the electromagnetic wave absorption, J. Colloid Interface Sci., 586(2021), p. 208. doi: 10.1016/j.jcis.2020.10.085
|
[127] |
J.Y. Cheng, H.B. Zhang, M.Q. Ning, et al., Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: The search for dielectric and magnetic synergy? Adv. Funct. Mater., 32(2022), No. 23, art. No. 2200123. doi: 10.1002/adfm.202200123
|
[128] |
T. Wang, G. Chen, J.H. Zhu, H. Gong, L.M. Zhang, and H.J. Wu, Deep understanding of impedance matching and quarter wavelength theory in electromagnetic wave absorption, J. Colloid Interface Sci., 595(2021), p. 1. doi: 10.1016/j.jcis.2021.03.132
|
[129] |
Z.C. Wu, H.W. Cheng, C. Jin, B.T. Yang, C.Y. Xu, K. Pei, H.B. Zhang, Z.Q. Yang, and R.C. Che, Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption, Adv. Mater., 34(2022), No. 11, art. No. 2107538. doi: 10.1002/adma.202107538
|
[130] |
X.F. Xu, S.H. Shi, Y.L. Tang, G.Z. Wang, M.F. Zhou, G.Q. Zhao, X.C. Zhou, S.W. Lin, and F.B. Meng, Growth of NiAl-layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application, Adv. Sci., 8(2021), No. 5, art. No. 2002658. doi: 10.1002/advs.202002658
|
[131] |
Z.G. Gao, J.Q. Zhang, S.J. Zhang, D. Lan, Z.H. Zhao, and K.C. Kou, Strategies for electromagnetic wave absorbers derived from zeolite imidazole framework (ZIF-67) with ferrocene containing polymers, Polymer, 202(2020), art. No. 122679. doi: 10.1016/j.polymer.2020.122679
|
[132] |
F. Chen, S.S. Zhang, B.B. Ma, et al., Bimetallic CoFe-MOF@Ti3C2Tx MXene derived composites for broadband microwave absorption, Chem. Eng. J., 431(2022), p. 134007. doi: 10.1016/j.cej.2021.134007
|
[133] |
S.J. Zhang, B. Cheng, Z.G. Gao, et al., Two-dimensional nanomaterials for high-efficiency electromagnetic wave absorption: An overview of recent advances and prospects, J. Alloys Compd., 893(2022), art. No. 162343. doi: 10.1016/j.jallcom.2021.162343
|
[134] |
Z.G. Gao, J.Q. Zhang, D. Lei, et al., Ferrocene decorative phenolic epoxy resin as lightweight thermal-stable dielectric relaxor for electromagnetic wave absorption, Compos. Commun., 22(2020), art. No. 100472. doi: 10.1016/j.coco.2020.100472
|
[135] |
S.J. Zhang, B. Cheng, Z.R. Jia, et al., The art of framework construction: Hollow-structured materials toward high-efficiency electromagnetic wave absorption, Adv. Compos. Hybrid Mater., 5(2022), No. 3, p. 1658. doi: 10.1007/s42114-022-00514-2
|
[136] |
M.S. Cao, X.X. Wang, M. Zhang, et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials, Adv. Funct. Mater., 29(2019), No. 25, art. No. 1807398. doi: 10.1002/adfm.201807398
|
[137] |
X.Y. Zhu, H.F. Qiu, P. Chen, G.Z. Chen, and W.X. Min, Anemone-shaped ZIF-67@CNTs as effective electromagnetic absorbent covered the whole X-band, Carbon, 173(2021), p. 1. doi: 10.1016/j.carbon.2020.10.055
|
[138] |
H.B. Zhang, J.Y. Cheng, H.H. Wang, et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation, Adv. Funct. Mater., 32(2022), art. No. 2108194. doi: 10.1002/adfm.202108194
|
[139] |
X. Zhang, J. Cheng, Z. Xiang, L. Cai, and W. Lu, A hierarchical Co @ mesoporous C/macroporous C sheet composite derived from bimetallic MOF and oroxylum indicum for enhanced microwave absorption, Carbon, 187(2022), p. 477. doi: 10.1016/j.carbon.2021.11.044
|
[140] |
Z.G. Gao, Z.H. Zhao, D. Lan, K.C. Kou, J.Q. Zhang, and H.J. Wu, Accessory ligand strategies for hexacyanometallate networks deriving perovskite polycrystalline electromagnetic absorbents, J. Mater. Sci. Technol., 82(2021), p. 69. doi: 10.1016/j.jmst.2020.11.071
|
[141] |
P.F. Yin, L.M. Zhang, Y.T. Tang, and J.C. Liu, Earthworm-like (Co/CoO)@C composite derived from MOF for solving the problem of low-frequency microwave radiation, J. Alloys Compd., 881(2021), art. No. 160556. doi: 10.1016/j.jallcom.2021.160556
|
[142] |
X.Y. Zhou, J. Wang, L.L. Zhou, Y.G. Wang, and D.S. Yao, Structure, magnetic and microwave absorption properties of NiZnMn ferrite ceramics, J. Magn. Magn. Mater., 534(2021), art. No. 168043. doi: 10.1016/j.jmmm.2021.168043
|
[143] |
Z.W. Zhang, Z.H. Cai, Z.Y. Wang, et al., A review on metal–organic framework-derived porous carbon-based novel microwave absorption materials, Nano Micro Lett., 13(2021), No. 1, p. 1. doi: 10.1007/s40820-020-00525-y
|
[144] |
W. Wei, X.G. Liu, W.L. Lu, et al., Light-weight gadolinium hydroxide@polypyrrole rare-earth nanocomposites with tunable and broadband electromagnetic wave absorption, ACS Appl. Mater. Interfaces, 11(2019), No. 13, p. 12752. doi: 10.1021/acsami.8b21516
|
[145] |
W. Liu, P.T. Duan, C. Mei, et al., Optimizing the size-dependent dielectric properties of metal–organic framework-derived Co/C composites for highly efficient microwave absorption, Inorg. Chem. Front., 8(2021), No. 8, p. 2042. doi: 10.1039/D0QI01502D
|
[146] |
W. Liu, L. Liu, Z.H. Yang, J.J. Xu, Y.L. Hou, and G.B. Ji, A versatile route toward the electromagnetic functionalization of metal-organic framework-derived three-dimensional nanoporous carbon composites, ACS Appl. Mater. Interfaces, 10(2018), No. 10, p. 8965. doi: 10.1021/acsami.8b00320
|
[147] |
Z.G. Gao, Y.H. Song, S.J. Zhang, et al., Electromagnetic absorbers with Schottky contacts derived from interfacial ligand exchanging metal-organic frameworks, J. Colloid Interface Sci., 600(2021), p. 288. doi: 10.1016/j.jcis.2021.05.009
|
[148] |
W.H. Huang, W.M. Gao, S.W. Zuo, et al., Hollow MoC/NC sphere for electromagnetic wave attenuation: Direct observation of interfacial polarization on nanoscale hetero-interfaces, J. Mater. Chem. A, 10(2022), No. 3, p. 1290. doi: 10.1039/D1TA09357F
|