Cite this article as: |
Dan Mao, Zhen Zhang, Mei Yang, Zumin Wang, Ranbo Yu, and Dan Wang, Constructing BaTiO3/TiO2@polypyrrole composites with hollow multishelled structure for enhanced electromagnetic wave absorbing properties, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 581-590. https://doi.org/10.1007/s12613-022-2556-7 |
Mei Yang E-mail: myang@ipe.ac.cn
Ranbo Yu E-mail: ranboyu@ustb.edu.cn
Dan Wang E-mail: danwang@ipe.ac.cn
Supplementary InformationsIJM-06-2022-0513.docx |
[1] |
F. Shahzad, M. Alhabeb, C.B. Hatter, et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes), Science, 353(2016), No. 6304, p. 1137. doi: 10.1126/science.aag2421
|
[2] |
H. Hu, G.D. Niu, Z.P. Zheng, L. Xu, L.Y. Liu, and J. Tang, Perovskite semiconductors for ionizing radiation detection, EcoMat, 4(2022), No. 6, art. No. e12258. doi: 10.1002/eom2.12258
|
[3] |
Y. Li, X.F. Liu, X.Y. Nie, et al., Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material, Adv. Funct. Mater., 29(2019), No. 10, art. No. 1807624. doi: 10.1002/adfm.201807624
|
[4] |
X.T. Chen, M. Zhou, Y. Zhao, et al., Morphology control of eco-friendly chitosan-derived carbon aerogels for efficient microwave absorption at thin thickness and thermal stealth, Green Chem., 24(2022), No. 13, p. 5280. doi: 10.1039/D2GC01604D
|
[5] |
F. Wang, W.H. Gu, J.B. Chen, et al., The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability, Nano Res., 15(2022), No. 4, p. 3720. doi: 10.1007/s12274-021-3955-1
|
[6] |
X.P. Li, Z.M. Deng, Y. Li, et al., Controllable synthesis of hollow microspheres with Fe@carbon dual-shells for broad bandwidth microwave absorption, Carbon, 147(2019), p. 172. doi: 10.1016/j.carbon.2019.02.073
|
[7] |
X. Qiu, L.X. Wang, H.L. Zhu, Y.K. Guan, and Q.T. Zhang, Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon, Nanoscale, 9(2017), No. 22, p. 7408. doi: 10.1039/C7NR02628E
|
[8] |
L.R. Cui, X.J. Han, F.Y. Wang, H.H. Zhao, and Y.C. Du, A review on recent advances in carbon-based dielectric system for microwave absorption, J. Mater. Sci., 56(2021), No. 18, p. 10782. doi: 10.1007/s10853-021-05941-y
|
[9] |
L.X. Gai, H.H. Zhao, F.Y. Wang, et al., Advances in core–shell engineering of carbon-based composites for electromagnetic wave absorption, Nano Res., 15(2022), No. 10, p. 9410. doi: 10.1007/s12274-022-4695-6
|
[10] |
L.R. Cui, C.H. Tian, L.L. Tang, et al., Space-confined synthesis of core–shell BaTiO3@carbon microspheres as a high-performance binary dielectric system for microwave absorption, ACS Appl. Mater. Interfaces, 11(2019), No. 34, p. 31182. doi: 10.1021/acsami.9b09779
|
[11] |
L. Wang, X. Li, Q.Q. Li, Y.H. Zhao, and R.C. Che, Enhanced polarization from hollow cube-like ZnSnO3 wrapped by multiwalled carbon nanotubes: As a lightweight and high-performance microwave absorber, ACS Appl. Mater. Interfaces, 10(2018), No. 26, p. 22602. doi: 10.1021/acsami.8b05414
|
[12] |
Z.G. Mu, G.K. Wei, H. Zhang, et al., The dielectric behavior and efficient microwave absorption of doped nanoscale LaMnO3 at elevated temperature, Nano Res., 15(2022), No. 8, p. 7731. doi: 10.1007/s12274-022-4500-6
|
[13] |
D. Mao, J.W. Wan, J.Y. Wang, and D. Wang, Sequential templating approach: A groundbreaking strategy to create hollow multishelled structures, Adv. Mater., 31(2019), No. 38, art. No. 1802874. doi: 10.1002/adma.201802874
|
[14] |
Y.Z. Wei, N.L. Yang, K.K. Huang, et al., Steering hollow multishelled structures in photocatalysis: Optimizing surface and mass transport, Adv. Mater., 32(2020), No. 44, art. No. 2002556. doi: 10.1002/adma.202002556
|
[15] |
Z. Zhang, D. Mao, M. Yang, and R.B. Yu, Application of hollow multi-shelled structures in electromagnetic wave field, Chem. J. Chin. Univ., 42(2021), No. 5, p. 1395.
|
[16] |
L.J. Yang, H.L. Lv, M. Li, Y. zhang, J.C. Liu, and Z.H. Yang, Multiple polarization effect of shell evolution on hierarchical hollow C@MnO2 composites and their wideband electromagnetic wave absorption properties, Chem. Eng. J., 392(2020), art. No. 123666. doi: 10.1016/j.cej.2019.123666
|
[17] |
J.W. Liu, J. Cheng, R.C. Che, J.J. Xu, M.M. Liu, and Z.W. Liu, Double-shelled yolk–shell microspheres with Fe3O4 cores and SnO2 double shells as high-performance microwave absorbers, J. Phys. Chem. C, 117(2013), No. 1, p. 489. doi: 10.1021/jp310898z
|
[18] |
J.Q. Tao, J.T. Zhou, Z.J. Yao, et al., Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties, Carbon, 172(2021), p. 542. doi: 10.1016/j.carbon.2020.10.062
|
[19] |
G. Ahmad, M.B. Dickerson, Y. Cai, et al., Rapid bioenabled formation of ferroelectric BaTiO3 at room temperature from an aqueous salt solution at near neutral pH, J. Am. Chem. Soc., 130(2008), No. 1, p. 4. doi: 10.1021/ja0744302
|
[20] |
F. Xia, J.W. Liu, D. Gu, P.F. Zhao, J. Zhang, and R.C. Che, Microwave absorption enhancement and electron microscopy characterization of BaTiO3 nano-torus, Nanoscale, 3(2011), No. 9, p. 3860. doi: 10.1039/c1nr10606f
|
[21] |
L.H. Tian, X.D. Yan, J.L. Xu, et al., Effect of hydrogenation on the microwave absorption properties of BaTiO3 nanoparticles, J. Mater. Chem. A, 3(2015), No. 23, p. 12550. doi: 10.1039/C5TA02109J
|
[22] |
Y.F. Zhu, Q.Q. Ni, and Y.Q. Fu, One-dimensional barium titanate coated multi-walled carbon nanotube heterostructures: Synthesis and electromagnetic absorption properties, RSC Adv., 5(2015), No. 5, p. 3748. doi: 10.1039/C4RA11784K
|
[23] |
S.P. Li, Y. Huang, N. Zhang, M. Zong, and P.B. Liu, Synthesis of polypyrrole decorated FeCo@SiO2 as a high-performance electromagnetic absorption material, J. Alloys Compd., 774(2019), p. 532. doi: 10.1016/j.jallcom.2018.09.349
|
[24] |
Z.C. Wu, D.G. Tan, K. Tian, et al., Facile preparation of core–shell Fe3O4@polypyrrole composites with superior electromagnetic wave absorption properties, J. Phys. Chem. C, 121(2017), No. 29, p. 15784. doi: 10.1021/acs.jpcc.7b04230
|
[25] |
R. Pang, X.J. Hu, S.Y. Zhou, et al., Preparation of multi-shelled conductive polymer hollow microspheres by using Fe3O4 hollow spheres as sacrificial templates, Chem. Commun., 50(2014), No. 83, p. 12493. doi: 10.1039/C4CC05469E
|
[26] |
H. Ren, R.B. Yu, J.Y. Wang, et al., Multishelled TiO2 hollow microspheres as anodes with superior reversible capacity for lithium ion batteries, Nano Lett., 14(2014), No. 11, p. 6679. doi: 10.1021/nl503378a
|
[27] |
S. Goel, A. Tyagi, A. Garg, et al., Microwave absorption study of composites based on CQD@BaTiO3 core shell and BaFe12O19 nanoparticles, J. Alloys Compd., 855(2021), art. No. 157411. doi: 10.1016/j.jallcom.2020.157411
|
[28] |
N.V. Blinova, J. Stejskal, M. Trchová, J. Prokeš, and M. Omastová, Polyaniline and polypyrrole: A comparative study of the preparation, Eur. Polym. J., 43(2007), No. 6, p. 2331. doi: 10.1016/j.eurpolymj.2007.03.045
|
[29] |
Y.F. Zhu, L. Zhang, T. Natsuki, Y.Q. Fu, and Q.Q. Ni, Facile synthesis of BaTiO3 nanotubes and their microwave absorption properties, ACS Appl. Mater. Interfaces, 4(2012), No. 4, p. 2101. doi: 10.1021/am300069x
|
[30] |
Y.K. Liu, Y.J. Feng, X.W. Wu, and X.G. Han, Microwave absorption properties of La doped barium titanate in X-band, J. Alloys Compd., 472(2009), No. 1-2, p. 441. doi: 10.1016/j.jallcom.2008.04.081
|
[31] |
T.W. Wang, Z.W. Yin, Y.H. Guo, et al., Highly selective photocatalytic conversion of glucose on holo-symmetrically spherical three-dimensionally ordered macroporous heterojunction photonic crystal, CCS Chem., (2022). DOI: 10.31635/ccschem.022.202202213
|
[32] |
Y.F. Zhu, Y.Q. Fu, T. Natsuki, and Q.Q. Ni, Fabrication and microwave absorption properties of BaTiO3 nanotube/polyaniline hybrid nanomaterials, Polym. Compos., 34(2013), No. 2, p. 265. doi: 10.1002/pc.22409
|
[33] |
P.B. Liu, S. Gao, Y. Wang, Y. Huang, Y. Wang, and J.H. Luo, Core–shell CoNi@graphitic carbon decorated on B, N-codoped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation, ACS Appl. Mater. Interfaces, 11(2019), No. 28, p. 25624. doi: 10.1021/acsami.9b08525
|
[34] |
B. Zhao, W.Y. Zhao, G. Shao, B.B. Fan, and R. Zhang, Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids, Dalton Trans., 44(2015), No. 36, p. 15984. doi: 10.1039/C5DT02715B
|
[35] |
H. Li, S.S. Bao, Y.M. Li, et al., Optimizing the electromagnetic wave absorption performances of designed Co3Fe7@C yolk–shell structures, ACS Appl. Mater. Interfaces, 10(2018), No. 34, p. 28839. doi: 10.1021/acsami.8b08040
|
[36] |
M.M. Lu, W.Q. Cao, H.L. Shi, et al., Multi-wall carbon nanotubes decorated with ZnO nanocrystals: Mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature, J. Mater. Chem. A, 2(2014), No. 27, p. 10540. doi: 10.1039/c4ta01715c
|
[37] |
Z.H. Yang, Y. Zhang, M. Li, et al., Surface architecture of Ni-based metal organic framework hollow spheres for adjustable microwave absorption, ACS Appl. Nano Mater., 2(2019), No. 12, p. 7888. doi: 10.1021/acsanm.9b01881
|
[38] |
S.Y. Wang, S.S. Peng, S.T. Zhong, and W. Jiang, Construction of SnO2/Co3Sn2@C and SnO2/Co3Sn2@air@C hierarchical heterostructures for efficient electromagnetic wave absorption, J. Mater. Chem. C, 6(2018), No. 35, p. 9465. doi: 10.1039/C8TC03260B
|
[39] |
Y. Qiu, Y. Lin, H.B. Yang, L. Wang, M.Q. Wang, and B. Wen, Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption, Chem. Eng. J., 383(2020), art. No. 123207. doi: 10.1016/j.cej.2019.123207
|
[40] |
Z.N. Li, X.J. Han, Y. Ma, et al., MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance, ACS Sustainable Chem. Eng., 6(2018), No. 7, p. 8904. doi: 10.1021/acssuschemeng.8b01270
|
[41] |
G.S. Wen, X.C. Zhao, Y. Liu, H. Zhang, and C. Wang, Facile synthesis of RGO/Co@Fe@Cu hollow nanospheres with efficient broadband electromagnetic wave absorption, Chem. Eng. J., 372(2019), p. 1. doi: 10.1016/j.cej.2019.04.152
|
[42] |
S.H. Choi, J.H. Oh, and T. Ko, Preparation and characteristics of Fe3O4-encapsulated BaTiO3 powder by ultrasound-enhanced ferrite plating, J. Magn. Magn. Mater., 272-276(2004), p. 2233. doi: 10.1016/j.jmmm.2003.12.925
|
[43] |
G.M. Shi, Y.F. Li, L. Ai, and F.N. Shi, Two step synthesis and enhanced microwave absorption properties of polycrystalline BaTiO3 coated Ni nanocomposites, J. Alloys Compd., 680(2016), p. 735. doi: 10.1016/j.jallcom.2016.04.131
|
[44] |
J. Ran, M.J. Guo, L. Zhong, and H.Q. Fu, In situ growth of BaTiO3 nanotube on the surface of reduced graphene oxide: A lightweight electromagnetic absorber, J. Alloys Compd., 773(2019), p. 423. doi: 10.1016/j.jallcom.2018.09.142
|
[45] |
X. Huang, Z.R. Chen, L.F. Tong, M.N. Feng, Z.J. Pu, and X.B. Liu, Preparation and microwave absorption properties of BaTiO3@MWCNTs core/shell heterostructure, Mater. Lett., 111(2013), p. 24. doi: 10.1016/j.matlet.2013.08.034
|
[46] |
Y. Zuo, J.H. Luo, M.L. Cheng, K. Zhang, and R.L. Dong, Synthesis, characterization and enhanced electromagnetic properties of BaTiO3/NiFe2O4-decorated reduced graphene oxide nanosheets, J. Alloys Compd., 744(2018), p. 310. doi: 10.1016/j.jallcom.2018.02.071
|
[47] |
Y. Huang, J.D. Ji, Y. Chen, et al., Broadband microwave absorption of Fe3O4–BaTiO3 composites enhanced by interfacial polarization and impedance matching, Composites Part B, 163(2019), p. 598. doi: 10.1016/j.compositesb.2019.01.008
|
[48] |
Z. Peng, W. Jiang, Y.P. Wang, and S.T. Zhong, Synthesis and microwave absorption properties of Fe3O4@BaTiO3/reduced graphene oxide nanocomposites, J. Mater. Sci. Mater. Electron., 27(2016), No. 2, p. 1304. doi: 10.1007/s10854-015-3890-6
|
[49] |
L.J. Yu, Y.F. Zhu, C. Qian, Q. Fu, Y.Z. Zhao, and Y.Q. Fu, Nanostructured barium titanate/carbon nanotubes incorporated polyaniline as synergistic electromagnetic wave absorbers, J. Nanomater., 2016(2016), art. No. 6032307.
|
[50] |
H.L. Lv, H.Q. Zhang, J. Zhao, G.B. Ji, and Y.W. Du, Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures, Nano Res., 9(2016), No. 6, p. 1813. doi: 10.1007/s12274-016-1074-1
|
[51] |
Y.H. Wang, X.J. Han, P. Xu, et al., Synthesis of pomegranate-like Mo2C@C nanospheres for highly efficient microwave absorption, Chem. Eng. J., 372(2019), p. 312. doi: 10.1016/j.cej.2019.04.153
|
[52] |
W.Y. Dai, F. Chen, H. Luo, et al., Synthesis of yolk–shell structured carbonyl iron@void@nitrogen doped carbon for enhanced microwave absorption performance, J. Alloys Compd., 812(2020), art. No. 152083. doi: 10.1016/j.jallcom.2019.152083
|
[53] |
J. Ouyang, Z.L. He, Y. Zhang, H.M. Yang, and Q.H. Zhao, Trimetallic FeCoNi@C nanocomposite hollow spheres derived from metal-organic frameworks with superior electromagnetic wave absorption ability, ACS Appl. Mater. Interfaces, 11(2019), No. 42, p. 39304. doi: 10.1021/acsami.9b11430
|
[54] |
B. Qu, C.L. Zhu, C.Y. Li, X.T. Zhang, and Y.J. Chen, Coupling hollow Fe3O4–Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material, ACS Appl. Mater. Interfaces, 8(2016), No. 6, p. 3730. doi: 10.1021/acsami.5b12789
|
[55] |
B. Zhao, X.Q. Guo, W.Y. Zhao, et al., Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties, Nano Res., 10(2017), No. 1, p. 331. doi: 10.1007/s12274-016-1295-3
|