Ziyue Zhao, Shuai Cao,  and Erol Yilmaz, Effect of layer thickness on the flexural property and microstructure of 3D-printed rhomboid polymer-reinforced cemented tailing composites, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 236-249. https://doi.org/10.1007/s12613-022-2557-6
Cite this article as:
Ziyue Zhao, Shuai Cao,  and Erol Yilmaz, Effect of layer thickness on the flexural property and microstructure of 3D-printed rhomboid polymer-reinforced cemented tailing composites, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 236-249. https://doi.org/10.1007/s12613-022-2557-6
Research Article

Effect of layer thickness on the flexural property and microstructure of 3D-printed rhomboid polymer-reinforced cemented tailing composites

+ Author Affiliations
  • Corresponding authors:

    Shuai Cao    E-mail: sandy_cao@ustb.edu.cn

    Erol Yilmaz    E-mail: erol.yilmaz@erdogan.edu.tr

  • Received: 26 July 2022Revised: 26 September 2022Accepted: 27 September 2022Available online: 29 September 2022
  • For mines with poor ore bodies and surrounding rocks, the general mining method does not allow the ore to be extracted from underground safely and efficiently. For these mines, the downward layered filling mining technique is undoubtedly the most suitable mining method. The downward filling mining technique may eliminate the troubles relating to poor ore deposit conditions, such as production safety, ore loss rate, and depletion rate. However, in this technique, the safety of the artificial roof of the next stratum is of paramount importance. Cementitious tailings backfilling (CTB) that is not sufficiently cemented and causes collapses could threaten ore production. This paper explores a diamond-shaped composite structure to mimic the stability of a glued false roof in an actual infill mine based on the recently emerged three-dimensional (3D) printing technology. Experimental means such as three-point bending and digital image correlation (DIC) techniques were used to explore the flexural characteristics of 3D construction specimens and CTB combinations with different cement/tailings weight ratios at diverse layer heights. The results show that the 3D structure with a 14-mm ply height and CTB has strong flexural characteristics, with a maximum deflection value of 30.1 mm, while the 3D-printed rhomboid polymer (3D-PRP) structure with a 26-mm ply height is slightly worse in terms of flexural strength characteristics, but it has a higher maximum flexural strength of 2.83 MPa. A combination of 3D structure and CTB has more unique mechanical properties than CTB itself. This research work offers practical knowledge on the artificial roof performance of the downward layered filling mining technique and builds a scientific knowledge base regarding the successful application of CTB material in mines.
  • loading
  • [1]
    G.S. Li, Z.Q. Hu, P.Y. Li, et al., Innovation for sustainable mining: Integrated planning of underground coal mining and mine reclamation, J. Clean. Prod., 351(2022), art. No. 131522. doi: 10.1016/j.jclepro.2022.131522
    [2]
    Z.H. Wang, W.C. Sun, Y.T. Shui, and P.J. Liu, Mining-induced stress rotation trace and its sensitivity to face advance direction in kilometer deep longwall panel with large face length, J. China Coal Soc., 47(2022), No. 2, p. 634.
    [3]
    Y. Xu, Z.J. Li, Y. Chen, et al., Synergetic mining of geothermal energy in deep mines: An innovative method for heat hazard control, Appl. Therm. Eng., 210(2022), art. No. 118398. doi: 10.1016/j.applthermaleng.2022.118398
    [4]
    Y. Zhao, T.H. Yang, H.L. Liu, et al., A path for evaluating the mechanical response of rock masses based on deep mining-induced microseismic data: A case study, Tunn. Undergr. Space Technol., 115(2021), art. No. 104025. doi: 10.1016/j.tust.2021.104025
    [5]
    S. Cao, G.L. Xue, W.D. Song, and Q. Teng, Strain rate effect on dynamic mechanical properties and microstructure of cemented tailings composites, Constr. Build. Mater., 247(2020), art. No. 118537. doi: 10.1016/j.conbuildmat.2020.118537
    [6]
    U.G. Akkaya, K. Cinku, and E. Yilmaz, Characterization of strength and quality of cemented mine backfill made up of lead–zinc processing tailings, Front. Mater., 8(2021), art. No. 740116. doi: 10.3389/fmats.2021.740116
    [7]
    Y.P. Kou, H.Q. Jiang, L. Ren, E. Yilmaz, and Y.H. Li, Rheological properties of cemented paste backfill with alkali-activated slag, Minerals, 10(2020), No. 3, art. No. 288. doi: 10.3390/min10030288
    [8]
    W. Sun, D. Wu, H.B. Liu, and C.L. Qu, Thermal, mechanical and ultrasonic properties of cemented tailings backfill subjected to microwave radiation, Constr. Build. Mater., 313(2021), art. No. 125535. doi: 10.1016/j.conbuildmat.2021.125535
    [9]
    S.J. Chen, A.B. Jin, Y.Q. Zhao, H. Li, and J. Wang, Mechanical properties and deformation mechanism of stratified cemented tailings backfill under unconfined compression, Constr. Build. Mater., 335(2022), art. No. 127205. doi: 10.1016/j.conbuildmat.2022.127205
    [10]
    D. Zheng, W.D. Song, S. Cao, and J.J. Li, Dynamical mechanical properties and microstructure characteristics of cemented tailings backfill considering coupled strain rates and confining pressures effects, Constr. Build. Mater., 320(2022), art. No. 126321. doi: 10.1016/j.conbuildmat.2022.126321
    [11]
    H.Q. Jiang, J. Han, Y.H. Li, et al., Relationship between ultrasonic pulse velocity and uniaxial compressive strength for cemented paste backfill with alkali-activated slag, Nondestruct. Test. Eval., 35(2020), No. 4, p. 359. doi: 10.1080/10589759.2019.1679140
    [12]
    J.J. Li, E. Yilmaz, and S. Cao, Influence of solid content, cement/tailings ratio, and curing time on rheology and strength of cemented tailings backfill, Minerals, 10(2020), No. 10, art. No. 922. doi: 10.3390/min10100922
    [13]
    A.P. Cheng, P.F. Shu, D.Q. Deng, et al., Microscopic acoustic emission simulation and fracture mechanism of cemented tailings backfill based on moment tensor theory, Constr. Build. Mater., 308(2021), art. No. 125069. doi: 10.1016/j.conbuildmat.2021.125069
    [14]
    W.C. Li, L.J. Guo, G.S. Liu, A. Pan, and T.T. Zhang, Analytical and experimental investigation of the relationship between spread and yield stress in the mini-cone test for cemented tailings backfill, Constr. Build. Mater., 260(2020), art. No. 119770. doi: 10.1016/j.conbuildmat.2020.119770
    [15]
    T. Kasap, E. Yilmaz, and M. Sari, Physico-chemical and micro-structural behavior of cemented mine backfill: Effect of pH in dam tailings, J. Environ. Manage., 314(2022), art. No. 115034. doi: 10.1016/j.jenvman.2022.115034
    [16]
    Y. Yang, D. Wu, L. He, and B.P. Wang, Coupled thermo–hydro–chemical effect on rheological behavior of fresh cemented tailings backfill, Adv. Powder Technol., 33(2022), No. 1, art. No. 103393. doi: 10.1016/j.apt.2021.12.012
    [17]
    B.X. Yan, H.W. Jia, E. Yilmaz, et al., Numerical study on microscale and macroscale strength behaviors of hardening cemented paste backfill, Constr. Build. Mater., 321(2022), art. No. 126327. doi: 10.1016/j.conbuildmat.2022.126327
    [18]
    Q.S. Chen, K. Luo, Y.M. Wang, et al., In-situ stabilization/solidification of lead/zinc mine tailings by cemented paste backfill modified with low-carbon bentonite alternative, J. Mater. Res. Technol., 17(2022), p. 1200. doi: 10.1016/j.jmrt.2022.01.099
    [19]
    C. Hou, W.C. Zhu, B.X. Yan, K. Guan, and J.F. Du, The effects of temperature and binder content on the behavior of frozen cemented tailings backfill at early ages, Constr. Build. Mater., 239(2020), art. No. 117752. doi: 10.1016/j.conbuildmat.2019.117752
    [20]
    T. Kasap, E. Yilmaz, N.U. Guner, and M. Sari, Recycling dam tailings as cemented mine backfill: Mechanical and geotechnical properties, Adv. Mater. Sci. Eng., 2022(2022), art. No. 6993068. doi: 10.1155/2022/6993068
    [21]
    G.L. Xue, E. Yilmaz, W.D. Song, and S. Cao, Mechanical, flexural and microstructural properties of cement-tailings matrix composites: Effects of fiber type and dosage, Composites Part B, 172(2019), p. 131. doi: 10.1016/j.compositesb.2019.05.039
    [22]
    E. Yilmaz, T. Belem, and M. Benzaazaou, One-dimensional consolidation parameters of cemented paste backfills, Miner. Resour. Manage., 28(2012), No. 4, p. 29. doi: 10.2478/v10269-012-0030-2
    [23]
    A.A. Wang, S. Cao, and E. Yilmaz, Effect of height to diameter ratio on dynamic characteristics of cemented tailings backfills with fiber reinforcement through impact loading, Constr. Build. Mater., 322(2022), art. No. 126448. doi: 10.1016/j.conbuildmat.2022.126448
    [24]
    Z.Q. Wang, Y. Wang, L. Cui, C. Bi, and A.X. Wu, Insight into the isothermal multiphysics processes in cemented paste backfill: Effect of curing time and cement-to-tailings ratio, Constr. Build. Mater., 325(2022), art. No. 126739. doi: 10.1016/j.conbuildmat.2022.126739
    [25]
    G.L. Xue and E. Yilmaz, Strength, acoustic, and fractal behavior of fiber reinforced cemented tailings backfill subjected to triaxial compression loads, Constr. Build. Mater., 338(2022), art. No. 127667. doi: 10.1016/j.conbuildmat.2022.127667
    [26]
    S. Cao, G.L. Xue, and E. Yilmaz, Flexural behavior of fiber reinforced cemented tailings backfill under three-point bending, IEEE Access, 7(2019), p. 139317. doi: 10.1109/ACCESS.2019.2943479
    [27]
    Z.Q. Huang, S. Cao, and E. Yilmaz, Investigation on the flexural strength, failure pattern and microstructural characteristics of combined fibers reinforced cemented tailings backfill, Constr. Build. Mater., 300(2021), art. No. 124005. doi: 10.1016/j.conbuildmat.2021.124005
    [28]
    Q.S. Chen, S.Y. Sun, Y.K. Liu, et al., Immobilization and leaching characteristics of fluoride from phosphogypsum-based cemented paste backfill, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1440. doi: 10.1007/s12613-021-2274-6
    [29]
    I.L.S. Libos, L. Cui, and X.R. Liu, Effect of curing temperature on time-dependent shear behavior and properties of polypropylene fiber-reinforced cemented paste backfill, Constr. Build. Mater., 311(2021), art. No. 125302. doi: 10.1016/j.conbuildmat.2021.125302
    [30]
    J.P. Qiu, J.C. Xiang, W.Q. Zhang, et al., Effect of microbial-cemented on mechanical properties of iron tailings backfill and its mechanism analysis, Constr. Build. Mater., 318(2022), art. No. 126001. doi: 10.1016/j.conbuildmat.2021.126001
    [31]
    B.L. Xiao, Z.J. Wen, S.J. Miao, and Q. Gao, Utilization of steel slag for cemented tailings backfill: Hydration, strength, pore structure, and cost analysis, Case Stud. Constr. Mater., 15(2021), art. No. e00621. doi: 10.1016/j.cscm.2021.e00621
    [32]
    A.X. Wu, Z.E. Ruan, and J.D. Wang, Rheological behavior of paste in metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 717. doi: 10.1007/s12613-022-2423-6
    [33]
    Z.Q. Huang, E. Yilmaz, and S. Cao, Analysis of strength and microstructural characteristics of mine backfills containing fly ash and desulfurized gypsum, Minerals, 11(2021), No. 4, art. No. 409. doi: 10.3390/min11040409
    [34]
    G.L. Xue, E. Yilmaz, W.D. Song, and S. Cao, Analysis of internal structure behavior of fiber reinforced cement-tailings matrix composites through X-ray computed tomography, Composites Part B, 175(2019), art. No. 107091. doi: 10.1016/j.compositesb.2019.107091
    [35]
    J.J. Li, S. Cao, E. Yilmaz, and Y.P. Liu, Compressive fatigue behavior and failure evolution of additive fiber-reinforced cemented tailings composites, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 345. doi: 10.1007/s12613-021-2351-x
    [36]
    S. Cao, G.L. Xue, E. Yilmaz, and Z.Y. Yin, Assessment of rheological and sedimentation characteristics of fresh cemented tailings backfill slurry, Int. J. Min. Reclam. Environ., 35(2021), No. 5, p. 319. doi: 10.1080/17480930.2020.1826092
    [37]
    H. Li, A.X. Wu, H.J. Wang, H. Chen, and L.H. Yang, Changes in underflow solid fraction and yield stress in paste thickeners by circulation, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 349. doi: 10.1007/s12613-020-2184-z
    [38]
    K. Zhao, M. Huang, Y. Zhou, et al., Synergistic deformation in a combination of cemented paste backfill and rocks, Constr. Build. Mater., 317(2022), art. No. 125943. doi: 10.1016/j.conbuildmat.2021.125943
    [39]
    Z.Q. Yu, N. Qin, S. Huang, J.G. Li, and Y.Y. Wang, Performance characteristics of cemented tailings containing crumb rubber as a filling material, Adv. Mater. Sci. Eng., 2022(2022), art. No. 3117806. doi: 10.1155/2022/3117806
    [40]
    S. Cao, D. Zheng, E. Yilmaz, et al., Strength development and microstructure characteristics of artificial concrete pillar considering fiber type and content effects, Constr. Build. Mater., 256(2020), art. No. 119408. doi: 10.1016/j.conbuildmat.2020.119408
    [41]
    Y.H. Niu, H.Y. Cheng, S.C. Wu, J.L. Sun, and J.X. Wang, Rheological properties of cemented paste backfill and the construction of a prediction model, Case Stud. Constr. Mater., 16(2022), art. No. e01140. doi: 10.1016/j.cscm.2022.e01140
    [42]
    G.L. Xue, E. Yilmaz, G.R. Feng, S. Cao, and L.J. Sun, Reinforcement effect of polypropylene fiber on dynamic properties of cemented tailings backfill under SHPB impact loading, Constr. Build. Mater., 279(2021), art. No. 122417. doi: 10.1016/j.conbuildmat.2021.122417
    [43]
    G.L. Xue, E. Yilmaz, G.R. Feng, and S. Cao, Bending behavior and failure mode of cemented tailings backfill composites incorporating different fibers for sustainable construction, Constr. Build. Mater., 289(2021), art. No. 123163. doi: 10.1016/j.conbuildmat.2021.123163
    [44]
    K. Fang, J.X. Yang, and Y.J. Wang, Comparison of the mode I fracture toughness of different cemented paste backfill-related structures: Effects of mixing recipe, Eng. Fract. Mech., 270(2022), art. No. 108579. doi: 10.1016/j.engfracmech.2022.108579
    [45]
    Y.R. Wang, H.J. Lu, and J. Wu, Experimental investigation on strength and failure characteristics of cemented paste backfill–rock composite under uniaxial compression, Constr. Build. Mater., 304(2021), art. No. 124629. doi: 10.1016/j.conbuildmat.2021.124629
    [46]
    Z.H. Wang, T.Y. Qi, G.R. Feng, et al., Electrical resistivity method to appraise static segregation of gangue-cemented paste backfill in the pipeline, Int. J. Press. Vessels Pip., 192(2021), art. No. 104385. doi: 10.1016/j.ijpvp.2021.104385
    [47]
    B.Y. Li, J.X. Zhang, H. Yan, N. Zhou, and M. Li, Experimental investigation into the thermal conductivity of gangue-cemented paste backfill in mine application, J. Mater. Res. Technol., 16(2022), p. 1792. doi: 10.1016/j.jmrt.2021.12.123
    [48]
    N. Zhou, J.X. Zhang, S.Y. Ouyang, et al., Feasibility study and performance optimization of sand-based cemented paste backfill materials, J. Clean. Prod., 259(2020), art. No. 120798. doi: 10.1016/j.jclepro.2020.120798
    [49]
    B.X. Yan, W.C. Zhu, C. Hou, E. Yilmaz, and M. Saadat, Characterization of early age behavior of cemented paste backfill through the magnitude and frequency spectrum of ultrasonic P-wave, Constr. Build. Mater., 249(2020), art. No. 118733. doi: 10.1016/j.conbuildmat.2020.118733
    [50]
    J. Xin, L. Liu, L.H. Xu, et al., A preliminary study of aeolian sand-cement-modified gasification slag-paste backfill: Fluidity, microstructure, and leaching risks, Sci. Total. Environ., 830(2022), art. No. 154766. doi: 10.1016/j.scitotenv.2022.154766
    [51]
    D. Wu, R.K. Zhao, C.W. Xie, and S. Liu, Effect of curing humidity on performance of cemented paste backfill, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1046. doi: 10.1007/s12613-020-1970-y
    [52]
    D. Zheng, W.D. Song, Y.Y. Tan, et al., Fractal and microscopic quantitative characterization of unclassified tailings flocs, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1429. doi: 10.1007/s12613-020-2181-2
    [53]
    C.C. Qi, H.B. Ly, L.M. Le, et al., Improved strength prediction of cemented paste backfill using a novel model based on adaptive neuro fuzzy inference system and artificial bee colony, Constr. Build. Mater., 284(2021), art. No. 122857. doi: 10.1016/j.conbuildmat.2021.122857
    [54]
    S. Cao, G.L. Xue, E. Yilmaz, Z.Y. Yin, and F.D. Yang, Utilizing concrete pillars as an environmental mining practice in underground mines, J. Clean. Prod., 278(2021), art. No. 123433. doi: 10.1016/j.jclepro.2020.123433
    [55]
    S. Cao, E. Yilmaz, Z.Y. Yin, et al., CT scanning of internal crack mechanism and strength behavior of cement-fiber-tailings matrix composites, Cem. Concr. Compos., 116(2021), art. No. 103865. doi: 10.1016/j.cemconcomp.2020.103865
    [56]
    A.B. Jin, S.L. Wang, B.X. Wang, et al., Fracture mechanism of specimens with 3D pringting cross joint based on DIC technology, Rock Soil Mech., 41(2020), No. 12, p. 3862.
    [57]
    L. Zhang, B. Song, S.K. Choi, Y.G. Yao, and Y.S. Shi, Anisotropy-inspired, simulation-guided design and 3D printing of microlattice metamaterials with tailored mechanical-transport performances, Composites Part B, 236(2022), art. No. 109837. doi: 10.1016/j.compositesb.2022.109837
    [58]
    Z.K. Yang, P. Niksiar, and Z.X. Meng, Identifying structure-property relationships of micro-architectured porous scaffolds through 3D printing and finite element analysis, Comput. Mater. Sci., 202(2022), art. No. 110987. doi: 10.1016/j.commatsci.2021.110987
    [59]
    N.K. Choudhry, B. Panda, and S. Kumar, In-plane energy absorption characteristics of a modified re-entrant auxetic structure fabricated via 3D printing, Composites Part B, 228(2022), art. No. 109437. doi: 10.1016/j.compositesb.2021.109437
    [60]
    P.T. Wang, Z.J. Huan, F.H. Ren, L. Zhang, and M.F. Cai, Research on direct shear behaviour and fracture patterns of 3D-printed complex jointed rock models, Rock Soil Mech., 41(2020), p. 46.
    [61]
    B. Salazar, P. Aghdasi, I.D. Williams, C.P. Ostertag, and H.K. Taylor, Polymer lattice-reinforcement for enhancing ductility of concrete, Mater. Des., 196(2020), art. No. 109184. doi: 10.1016/j.matdes.2020.109184
    [62]
    J.W. Liu, H. Kanwal, C. Tang, and W.F. Hao, Study on flexural properties of 3D printed lattice-reinforced concrete structures using acoustic emission and digital image correlation, Constr. Build. Mater., 333(2022), art. No. 127418. doi: 10.1016/j.conbuildmat.2022.127418
    [63]
    Y.H. Wang, G.Q. Zhang, H.L. Ren, G. Liu, and Y. Xiong, Fabrication strategy for joints in 3D printed continuous fiber reinforced composite lattice structures, Compos. Commun., 30(2022), art. No. 101080. doi: 10.1016/j.coco.2022.101080
    [64]
    S.A.M. Ghannadpour, M. Mahmoudi, and K.H. Nedjad, Structural behavior of 3D-printed sandwich beams with strut-based lattice core: Experimental and numerical study, Compos. Struct., 281(2022), art. No. 115113. doi: 10.1016/j.compstruct.2021.115113
    [65]
    J. Song, M.Q. Cao, L.M. Cai, et al., 3D printed polymeric formwork for lattice cementitious composites, J. Build. Eng., 43(2021), art. No. 103074. doi: 10.1016/j.jobe.2021.103074
    [66]
    S.W. Qin, S. Cao, and E. Yilmaz, Employing U-shaped 3D printed polymer to improve flexural properties of cementitious tailings backfills, Constr. Build. Mater., 320(2022), art. No. 126296. doi: 10.1016/j.conbuildmat.2021.126296
    [67]
    S.W. Qin, S. Cao, E. Yilmaz, and J.J. Li, Influence of types and shapes of 3D printed polymeric lattice on ductility performance of cementitious backfill composites, Constr. Build. Mater., 307(2021), art. No. 124973. doi: 10.1016/j.conbuildmat.2021.124973
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(941) PDF Downloads(97) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return