Cite this article as: |
Fang Xu, Wanning Cao, Jinzhou Li, Songsong Zhi, Zhiyong Gao, Yuqin Jiang, Wei Li, Kai Jiang, and Dapeng Wu, TiO2@NH2-MIL-125(Ti) composite derived from a partial-etching strategy with enhanced carriers’ transfer for the rapid photocatalytic Cr(VI) reduction, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 630-641. https://doi.org/10.1007/s12613-022-2559-4 |
Yuqin Jiang E-mail: jiangyuqin@htu.cn
Dapeng Wu E-mail: dapengwu@htu.edu.cn
Supplementary Information-s12613-022-2559-4.doc |
[1] |
Y.X. Li, H. Fu, P. Wang, C. Zhao, W. Liu, and C.C. Wang, Porous tube-like ZnS derived from rod-like ZIF-L for photocatalytic Cr(VI) reduction and organic pollutants degradation, Environ. Pollut., 256(2020), art. No. 113417. doi: 10.1016/j.envpol.2019.113417
|
[2] |
J. Geng, F. Gu, and J.M. Chang, Fabrication of magnetic lignosulfonate using ultrasonic-assisted in situ synthesis for efficient removal of Cr(VI) and Rhodamine B from wastewater, J. Hazard. Mater., 375(2019), p. 174. doi: 10.1016/j.jhazmat.2019.04.086
|
[3] |
W.J. Jiang, M. Pelaez, D.D. Dionysiou, M.H. Entezari, D. Tsoutsou, and K. O’Shea, Chromium(VI) removal by maghemite nanoparticles, Chem. Eng. J., 222(2013), p. 527. doi: 10.1016/j.cej.2013.02.049
|
[4] |
C.E. Barrera-Díaz, V. Lugo-Lugo, and B. Bilyeu, A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction, J. Hazard. Mater., 223-224(2012), p. 1. doi: 10.1016/j.jhazmat.2012.04.054
|
[5] |
S. Jamshidifard, S. Koushkbaghi, S. Hosseini, et al., Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions, J. Hazard. Mater., 368(2019), p. 10. doi: 10.1016/j.jhazmat.2019.01.024
|
[6] |
S. Wu, X.B. He, L.J. Wang, and K.C. Chou, High Cr(VI) adsorption capacity of rutile titania prepared by hydrolysis of TiCl4 with AlCl3 addition, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1157. doi: 10.1007/s12613-020-1965-8
|
[7] |
F. Chen, Q. Yang, Y.L. Wang, et al., Efficient construction of bismuth vanadate-based Z-scheme photocatalyst for simultaneous Cr(VI) reduction and ciprofloxacin oxidation under visible light: Kinetics, degradation pathways and mechanism, Chem. Eng. J., 348(2018), p. 157. doi: 10.1016/j.cej.2018.04.170
|
[8] |
J.H. Qiu, X.F. Zhang, X.G. Zhang, et al., Constructing Cd0.5Zn0.5S@ZIF-8 nanocomposites through self-assembly strategy to enhance Cr(VI) photocatalytic reduction, J. Hazard. Mater., 349(2018), p. 234. doi: 10.1016/j.jhazmat.2018.02.009
|
[9] |
Z.P. Cheng, Q. Dong, S. Chen, et al., Novel AgClxBr1−x solid solutions photocatalyst with enhanced photocatalytic activity for reduction of Cr6+ and oxidation of Bisphenol A under simulated sunlight, Mater. Res. Bull., 139(2021), art. No. 111257. doi: 10.1016/j.materresbull.2021.111257
|
[10] |
F. Xu, H.M. Chen, C.Y. Xu, et al., Ultra-thin Bi2WO6 porous nanosheets with high lattice coherence for enhanced performance for photocatalytic reduction of Cr(VI), J. Colloid Interface Sci., 525(2018), p. 97. doi: 10.1016/j.jcis.2018.04.057
|
[11] |
H. Furukawa, K.E. Cordova, M. O'Keeffe, and O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science, 341(2013), No. 6149, art. No. 1230444. doi: 10.1126/science.1230444
|
[12] |
M.A. Syzgantseva, C.P. Ireland, F.M. Ebrahim, B. Smit, and O.A. Syzgantseva, Metal substitution as the method of modifying electronic structure of metal-organic frameworks, J. Am. Chem. Soc., 141(2019), No. 15, p. 6271. doi: 10.1021/jacs.8b13667
|
[13] |
T. Zhang and W.B. Lin, Metal-organic frameworks for artificial photosynthesis and photocatalysis, Chem. Soc. Rev., 43(2014), No. 16, p. 5982. doi: 10.1039/C4CS00103F
|
[14] |
M.A. Nasalevich, M. van der Veen, F. Kapteijn, and J. Gascon, Metal-organic frameworks as heterogeneous photocatalysts: Advantages and challenges, CrystEngComm, 16(2014), No. 23, p. 4919. doi: 10.1039/C4CE00032C
|
[15] |
S. Naghdi, A. Cherevan, A. Giesriegl, et al., Selective ligand removal to improve accessibility of active sites in hierarchical MOFs for heterogeneous photocatalysis, Nat. Commun., 13(2022), art. No. 282. doi: 10.1038/s41467-021-27775-7
|
[16] |
A. Corma, H. García, and F.X.L. i Xamena, Engineering metal organic frameworks for heterogeneous catalysis, Chem. Rev., 110(2010), No. 8, p. 4606. doi: 10.1021/cr9003924
|
[17] |
H.Q. Xu, J.H. Hu, D.K. Wang, et al., Visible-light photoreduction of CO2 in a metal-organic framework: Boosting electron–hole separation via electron trap states, J. Am. Chem. Soc., 137(2015), No. 42, p. 13440. doi: 10.1021/jacs.5b08773
|
[18] |
X.L. Chen, S.N. Xiao, H. Wang, et al., MOFs conferred with transient metal centers for enhanced photocatalytic activity, Angew. Chem. Int. Ed., 59(2020), No. 39, p. 17182. doi: 10.1002/anie.202002375
|
[19] |
X. Wang, X.L. Zhang, W. Zhou, L.Q. Liu, J.H. Ye, and D.F. Wang, An ultrathin porphyrin-based metal-organic framework for efficient photocatalytic hydrogen evolution under visible light, Nano Energy, 62(2019), p. 250. doi: 10.1016/j.nanoen.2019.05.023
|
[20] |
J. Wang, A.S. Cherevan, C. Hannecart, et al., Ti-based MOFs: New insights on the impact of ligand composition and hole scavengers on stability, charge separation and photocatalytic hydrogen evolution, Appl. Catal. B, 283(2021), art. No. 119626. doi: 10.1016/j.apcatb.2020.119626
|
[21] |
S.H. Wu, X.F. Xing, D. Wang, et al., Highly ordered hierarchically macroporous MIL-125 with high specific surface area for photocatalytic CO2 fixation, ACS Sustainable Chem. Eng., 8(2020), No. 1, p. 148. doi: 10.1021/acssuschemeng.9b04829
|
[22] |
Y.X. Li, C.C. Wang, H.F. Fu, and P. Wang, Marigold-flower-like TiO2/MIL-125 core–shell composite for enhanced photocatalytic Cr(VI) reduction, J. Environ. Chem. Eng., 9(2021), No. 4, art. No. 105451. doi: 10.1016/j.jece.2021.105451
|
[23] |
L. Li, X.S. Wang, T.F. Liu, and J.H. Ye, Titanium-based MOF materials: From crystal engineering to photocatalysis, Small Methods, 4(2020), No. 12, art. No. 2000486. doi: 10.1002/smtd.202000486
|
[24] |
G. Wen and Z.G. Guo, Facile modification of NH2-MIL-125(Ti) to enhance water stability for efficient adsorptive removal of crystal violet from aqueous solution, Colloids Surf. A, 541(2018), p. 58. doi: 10.1016/j.colsurfa.2018.01.011
|
[25] |
S. Hu, M. Liu, K.Y. Li, et al., Solvothermal synthesis of NH2-MIL-125(Ti) from circular plate to octahedron, CrystEngComm, 16(2014), No. 41, p. 9645. doi: 10.1039/C4CE01545B
|
[26] |
F. Guo, J.H. Guo, P. Wang, et al., Facet-dependent photocatalytic hydrogen production of metal-organic framework NH2-MIL-125(Ti), Chem. Sci., 10(2019), No. 18, p. 4834. doi: 10.1039/C8SC05060K
|
[27] |
G. Capano, F. Ambrosio, S. Kampouri, K.C. Stylianou, A. Pasquarello, and B. Smit, On the electronic and optical properties of metal-organic frameworks: Case study of MIL-125 and MIL-125-NH2, J. Phys. Chem. C, 124(2020), No. 7, p. 4065. doi: 10.1021/acs.jpcc.9b09453
|
[28] |
X.M. Cheng, X.Y. Dao, S.Q. Wang, J. Zhao, and W.Y. Sun, Enhanced photocatalytic CO2 reduction activity over NH2-MIL-125(Ti) by facet regulation, ACS Catal., 11(2021), No. 2, p. 650. doi: 10.1021/acscatal.0c04426
|
[29] |
S. Gao, W.L. Cen, Q. Li, et al., A mild one-step method for enhancing optical absorption of amine-functionalized metal-organic frameworks, Appl. Catal. B, 227(2018), p. 190. doi: 10.1016/j.apcatb.2018.01.007
|
[30] |
F. Mohammadnezhad, S. Kampouri, S.K. Wolff, et al., Tuning the optoelectronic properties of hybrid functionalized MIL-125-NH2 for photocatalytic hydrogen evolution, ACS Appl. Mater. Interfaces, 13(2021), No. 4, p. 5044. doi: 10.1021/acsami.0c19345
|
[31] |
S. Kampouri, T.N. Nguyen, M. Spodaryk, et al., Concurrent photocatalytic hydrogen generation and dye degradation using MIL-125-NH2 under visible light irradiation, Adv. Funct. Mater., 28(2018), No. 52, art. No. 1806368. doi: 10.1002/adfm.201806368
|
[32] |
Y.W. Sun, Y. Liu, J. Caro, X.W. Guo, C.S. Song, and Y. Liu, In-plane epitaxial growth of highly c-oriented NH2-MIL-125(Ti) membranes with superior H2/CO2 selectivity, Angew. Chem. Int. Ed., 57(2018), No. 49, p. 16088. doi: 10.1002/anie.201810088
|
[33] |
J.H. Qiu, M. Li, H.T. Wang, and J.F. Yao, Integration of plasmonic effect into MIL-125-NH2: An ultra-efficient photocatalyst for simultaneous removal of ternary system pollutants, Chemosphere, 242(2020), art. No. 125197. doi: 10.1016/j.chemosphere.2019.125197
|
[34] |
V. Muelas-Ramos, C. Belver, J.J. Rodriguez, and J. Bedia, Synthesis of noble metal-decorated NH2-MIL-125 titanium MOF for the photocatalytic degradation of acetaminophen under solar irradiation, Sep. Purif. Technol., 272(2021), art. No. 118896. doi: 10.1016/j.seppur.2021.118896
|
[35] |
Y.C. Zhou, P. Wang, H.F. Fu, C. Zhao, and C.C. Wang, Ternary Ag/Ag3PO4/MIL-125-NH2 Z-scheme heterojunction for boosted photocatalytic Cr(VI) cleanup under visible light, Chin. Chem. Lett., 31(2020), No. 10, p. 2645. doi: 10.1016/j.cclet.2020.02.048
|
[36] |
S.Y. Zhang, M. Du, Z.P. Xing, Z.Z. Li, K. Pan, and W. Zhou, Defect-rich and electron-rich mesoporous Ti-MOFs based NH2-MIL-125(Ti)@ZnIn2S4/CdS hierarchical tandem heterojunctions with improved charge separation and enhanced solar-driven photocatalytic performance, Appl. Catal. B, 262(2020), art. No. 118202. doi: 10.1016/j.apcatb.2019.118202
|
[37] |
H. Wang, Q. Zhang, J.J. Li, et al., The covalent Coordination-driven Bi2S3@NH2-MIL-125(Ti)-SH heterojunction with boosting photocatalytic CO2 reduction and dye degradation performance, J. Colloid Interface Sci., 606(2022), p. 1745. doi: 10.1016/j.jcis.2021.08.135
|
[38] |
J. Chen, M.G. Wang, J. Han, and R. Guo, TiO2 nanosheet/NiO nanorod hierarchical nanostructures: p-n heterojunctions towards efficient photocatalysis, J. Colloid Interface Sci., 562(2020), p. 313. doi: 10.1016/j.jcis.2019.12.031
|
[39] |
G.Q. Zhang, X. Yang, C.X. He, P.X. Zhang, and H.W. Mi, Constructing a tunable defect structure in TiO2 for photocatalytic nitrogen fixation, J. Mater. Chem. A, 8(2020), No. 1, p. 334. doi: 10.1039/C9TA10471B
|
[40] |
X.G. Han, Q. Kuang, M.S. Jin, Z.X. Xie, and L.S. Zheng, Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties, J. Am. Chem. Soc., 131(2009), No. 9, p. 3152. doi: 10.1021/ja8092373
|
[41] |
J.F. Chen, X.D. Zhang, F.K. Bi, X.L. Zhang, Y. Yang, and Y.X. Wang, A facile synthesis for uniform tablet-like TiO2/C derived from Materials of Institut Lavoisier-125(Ti) (MIL-125(Ti)) and their enhanced visible light-driven photodegradation of tetracycline, J. Colloid Interface Sci., 571(2020), p. 275. doi: 10.1016/j.jcis.2020.03.055
|
[42] |
L.F. Liu, F.Y. Zhang, J.L. Zhang, et al., Interfacial assembly and hydrolysis for synthesizing a TiO2/metal-organic framework composite, Soft Matter, 13(2017), No. 48, p. 9174. doi: 10.1039/C7SM02007D
|
[43] |
Y. Zhang, Z.Y. Zhao, J.R. Chen, et al., C-doped hollow TiO2 spheres: In situ synthesis, controlled shell thickness, and superior visible-light photocatalytic activity, Appl. Catal. B, 165(2015), p. 715. doi: 10.1016/j.apcatb.2014.10.063
|
[44] |
H. Lee, H.S. Jang, N.Y. Kim, and J.B. Joo, Cu-doped TiO2 hollow nanostructures for the enhanced photocatalysis under visible light conditions, J. Ind. Eng. Chem., 99(2021), p. 352. doi: 10.1016/j.jiec.2021.04.045
|
[45] |
Q.Q. Liu, J.X. Huang, H. Tang, X.H. Yu, and J. Shen, Construction 0D TiO2 nanoparticles/2D CoP nanosheets heterojunctions for enhanced photocatalytic H2 evolution activity, J. Mater. Sci. Technol., 56(2020), p. 196. doi: 10.1016/j.jmst.2020.04.026
|
[46] |
L.L. Wang, G.G. Tang, S. Liu, et al., Interfacial active-site-rich 0D Co3O4/1D TiO2 p-n heterojunction for enhanced photocatalytic hydrogen evolution, Chem. Eng. J., 428(2022), art. No. 131338. doi: 10.1016/j.cej.2021.131338
|
[47] |
J. Shen, R. Wang, Q.Q. Liu, X.F. Yang, H. Tang, and J. Yang, Accelerating photocatalytic hydrogen evolution and pollutant degradation by coupling organic co-catalysts with TiO2, Chin. J. Catal., 40(2019), No. 3, p. 380. doi: 10.1016/S1872-2067(18)63166-3
|
[48] |
X.Y. Li, Y.H. Pi, Q.Q. Hou, et al., Amorphous TiO2@NH2-MIL-125(Ti) homologous MOF-encapsulated heterostructures with enhanced photocatalytic activity, Chem. Commun., 54(2018), No. 15, p. 1917. doi: 10.1039/C7CC09072B
|
[49] |
J.M. Hu, J. Ding, and Q. Zhong, In situ fabrication of amorphous TiO2/NH2-MIL-125(Ti) for enhanced photocatalytic CO2 into CH4 with H2O under visible-light irradiation, J. Colloid Interface Sci., 560(2020), p. 857. doi: 10.1016/j.jcis.2019.11.003
|
[50] |
B.X. Zhang, J.L. Zhang, X.N. Tan, et al., MIL-125-NH2@TiO2 core–shell particles produced by a post-solvothermal route for high-performance photocatalytic H2 production, ACS Appl. Mater. Interfaces, 10(2018), No. 19, p. 16418. doi: 10.1021/acsami.8b01462
|
[51] |
R. Bibi, H.L. Huang, M. Kalulu, et al., Synthesis of amino-functionalized Ti-MOF derived yolk-shell and hollow heterostructures for enhanced photocatalytic hydrogen production under visible light, ACS Sustainable Chem. Eng., 7(2019), No. 5, p. 4868. doi: 10.1021/acssuschemeng.8b05352
|
[52] |
M. Zhang, J.N. Chang, Y.F. Chen, et al., Controllable synthesis of COFs-based multicomponent nanocomposites from core–shell to yolk-shell and hollow-sphere structure for artificial photosynthesis, Adv. Mater., 33(2021), No. 48, art. No. 2105002. doi: 10.1002/adma.202105002
|
[53] |
L.M. Sun, Y.S. Yuan, F. Wang, Y.L. Zhao, W.W. Zhan, and X.G. Han, Selective wet-chemical etching to create TiO2@MOF frame heterostructure for efficient photocatalytic hydrogen evolution, Nano Energy, 74(2020), p. 104909. doi: 10.1016/j.nanoen.2020.104909
|
[54] |
X.M. Cheng, Y.M. Gu, X.Y. Zhang, et al., Crystallographic facet heterojunction of MIL-125-NH2(Ti) for carbon dioxide photoreduction, Appl. Catal. B, 298(2021), art. No. 120524. doi: 10.1016/j.apcatb.2021.120524
|
[55] |
M.A. Nasalevich, M.G. Goesten, T.J. Savenije, F. Kapteijn, and J. Gascon, Enhancing optical absorption of metal-organic frameworks for improved visible light photocatalysis, Chem. Commun., 49(2013), No. 90, p. 10575. doi: 10.1039/C3CC46398B
|
[56] |
J.G. Yu, J.X. Low, W. Xiao, P. Zhou, and M. Jaroniec, Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets, J. Am. Chem. Soc., 136(2014), No. 25, p. 8839. doi: 10.1021/ja5044787
|
[57] |
D.L. Dai, J.H. Qiu, L. Zhang, H. Ma, and J.F. Yao, Amino-functionalized Ti-metal-organic framework decorated BiOI sphere for simultaneous elimination of Cr(VI) and tetracycline, J. Colloid Interface Sci., 607(2022), p. 933. doi: 10.1016/j.jcis.2021.09.084
|
[58] |
Z.Q. He, J.T. Tang, J. Shen, J.M. Chen, and S. Song, Enhancement of photocatalytic reduction of CO2 to CH4 over TiO2 nanosheets by modifying with sulfuric acid, Appl. Surf. Sci., 364(2016), p. 416. doi: 10.1016/j.apsusc.2015.12.163
|
[59] |
P. Karthik, E. Balaraman, and B. Neppolian, Efficient solar light-driven H2 production: Post-synthetic encapsulation of a Cu2O co-catalyst in a metal-organic framework (MOF) for boosting the effective charge carrier separation, Catal. Sci. Technol., 8(2018), No. 13, p. 3286. doi: 10.1039/C8CY00604K
|
[60] |
X.S. Wang, C.H. Chen, F. Ichihara, et al., Integration of adsorption and photosensitivity capabilities into a cationic multivariate metal-organic framework for enhanced visible-light photoreduction reaction, Appl. Catal. B, 253(2019), p. 323. doi: 10.1016/j.apcatb.2019.04.074
|
[61] |
Y.J. Fu, K.J. Zhang, Y. Zhang, Y.Q. Cong, and Q. Wang, Fabrication of visible-light-active MR/NH2-MIL-125(Ti) homojunction with boosted photocatalytic performance, Chem. Eng. J., 412(2021), art. No. 128722. doi: 10.1016/j.cej.2021.128722
|
[62] |
V. Chevalier, J. Martin, D. Peralta, A. Roussey, and F. Tardif, Performance of HKUST-1 metal-organic framework for a VOCs mixture adsorption at realistic concentrations ranging from 0.5 to 2.5 ppmv under different humidity conditions, J. Environ. Chem. Eng., 7(2019), No. 3, art. No. 103131. doi: 10.1016/j.jece.2019.103131
|
[63] |
A. Ishikawa, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, and K. Domen, Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ≤650 nm), J. Am. Chem. Soc., 124(2002), No. 45, p. 13547. doi: 10.1021/ja0269643
|
[64] |
S. Wu, H.T. Yu, S. Chen, and X. Quan, Enhanced photocatalytic H2O2 production over carbon nitride by doping and defect engineering, ACS Catal., 10(2020), No. 24, p. 14380. doi: 10.1021/acscatal.0c03359
|
[65] |
W.C. Cui, J.P. Shang, H.Y. Bai, et al.,In-situ implantation of plasmonic Ag into metal-organic frameworks for constructing efficient Ag/NH2-MIL-125/TiO2 photoanode, Chem. Eng. J., 388(2020), art. No. 124206. doi: 10.1016/j.cej.2020.124206
|