Bolin Xiao, Shengjun Miao, Daohong Xia, Huatao Huang, and Jingyu Zhang, Detecting the backfill pipeline blockage and leakage through an LSTM-based deep learning model, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1573-1583. https://doi.org/10.1007/s12613-022-2560-y
Cite this article as:
Bolin Xiao, Shengjun Miao, Daohong Xia, Huatao Huang, and Jingyu Zhang, Detecting the backfill pipeline blockage and leakage through an LSTM-based deep learning model, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1573-1583. https://doi.org/10.1007/s12613-022-2560-y
Research Article

Detecting the backfill pipeline blockage and leakage through an LSTM-based deep learning model

+ Author Affiliations
  • Corresponding author:

    Shengjun Miao    E-mail: miaoshengjun@ustb.edu.cn

  • Received: 7 August 2022Revised: 19 October 2022Accepted: 20 October 2022Available online: 25 October 2022
  • Detecting a pipeline’s abnormal status, which is typically a blockage and leakage accident, is important for the continuity and safety of mine backfill. The pipeline system for gravity-transport high-density backfill (GHB) is complex. Specifically designed, efficient, and accurate abnormal pipeline detection methods for GHB are rare. This work presents a long short-term memory-based deep learning (LSTM-DL) model for GHB pipeline blockage and leakage diagnosis. First, an industrial pipeline monitoring system was introduced using pressure and flow sensors. Second, blockage and leakage field experiments were designed to solve the problem of negative sample deficiency. The pipeline’s statistical characteristics with different working statuses were analyzed to show their complexity. Third, the architecture of the LSTM-DL model was elaborated on and evaluated. Finally, the LSTM-DL model was compared with state-of-the-art (SOTA) learning algorithms. The results show that the backfilling cycle comprises multiple working phases and is intermittent. Although pressure and flow signals fluctuate stably in a normal cycle, their values are diverse in different cycles. Plugging causes a sudden change in interval signal features; leakage results in long variation duration and a wide fluctuation range. Among the SOTA models, the LSTM-DL model has the highest detection accuracy of 98.31% for all states and the lowest misjudgment or false positive rate of 3.21% for blockage and leakage states. The proposed model can accurately recognize various pipeline statuses of complex GHB systems.
  • loading
  • [1]
    M. Helinski, M. Fahey, and A. Fourie, Behavior of cemented paste backfill in two mine stopes: Measurements and modeling, J. Geotech. Geoenviron. Eng., 137(2011), No. 2, p. 171. doi: 10.1061/(ASCE)GT.1943-5606.0000418
    [2]
    X. Zhao, A. Fourie, and C.C. Qi, Mechanics and safety issues in tailing-based backfill: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1165. doi: 10.1007/s12613-020-2004-5
    [3]
    L. Liu, J. Xin, C. Huan, et al., Effect of curing time on the mesoscopic parameters of cemented paste backfill simulated using the particle flow code technique, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 590. doi: 10.1007/s12613-020-2007-2
    [4]
    K. Been, E.T. Brown, and N. Hepworth, Liquefaction potential of paste fill at Neves Corvo Mine, Portugal, Min. Technol., 111(2002), No. 1, p. 47. doi: 10.1179/mnt.2002.111.1.47
    [5]
    R. Cooke, Design procedure for hydraulic backfill distribution systems, J. South. Afr. Inst. Min. Metall., 101(2001), No. 2, p. 97.
    [6]
    A.X. Wu, Z.E. Ruan, and J.D. Wang, Rheological behavior of paste in metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 717. doi: 10.1007/s12613-022-2423-6
    [7]
    H.F. Lu, T. Iseley, S. Behbahani, and L.D. Fu, Leakage detection techniques for oil and gas pipelines: State-of-the-art, Tunnelling Underground Space Technol., 98(2020), art. No. 103249. doi: 10.1016/j.tust.2019.103249
    [8]
    A. Mostafapour and S. Davoudi, Analysis of leakage in high pressure pipe using acoustic emission method, Appl. Acoust., 74(2013), No. 3, p. 335. doi: 10.1016/j.apacoust.2012.07.012
    [9]
    S. El-Zahab, E. Mohammed Abdelkader, and T. Zayed, An accelerometer-based leak detection system, Mech. Syst. Signal Process., 108(2018), p. 276. doi: 10.1016/j.ymssp.2018.02.030
    [10]
    P. Stajanca, S. Chruscicki, T. Homann, S. Seifert, D. Schmidt, and A. Habib, Detection of leak-induced pipeline vibrations using fiber-optic distributed acoustic sensing, Sensors (Basel), 18(2018), No. 9, art. No. 2841.
    [11]
    D. Zaman, M.K. Tiwari, A.K. Gupta, and D. Sen, A review of leakage detection strategies for pressurised pipeline in steady-state, Eng. Fail. Anal., 109(2020), art. No. 104264. doi: 10.1016/j.engfailanal.2019.104264
    [12]
    Y.M. Yan, Y.T. Liang, H.R. Zhang, et al., A two-stage optimization method for unmanned aerial vehicle inspection of an oil and gas pipeline network, Pet. Sci., 16(2019), No. 2, p. 458. doi: 10.1007/s12182-019-0305-y
    [13]
    V.G. Bondur, Aerospace methods and technologies for monitoring oil and gas areas and facilities, Izv. Atmos. Ocean. Phys., 47(2011), No. 9, p. 1007. doi: 10.1134/S0001433811090039
    [14]
    M.A. Adegboye, W.K. Fung, and A. Karnik, Recent advances in pipeline monitoring and oil leakage detection technologies: Principles and approaches, Sensors (Basel), 19(2019), No. 11, art. No. 2548.
    [15]
    N. Aziz, S.A.K. Tanoli, and F. Nawaz, A programmable logic controller based remote pipeline monitoring system, Process. Saf. Environ. Prot., 149(2021), p. 894. doi: 10.1016/j.psep.2021.03.045
    [16]
    L. Yang and Q. Zhao, A novel PPA method for fluid pipeline leak detection based on OPELM and bidirectional LSTM, IEEE Access, 8(2020), p. 107185. doi: 10.1109/ACCESS.2020.3000960
    [17]
    C.C. Sun, B. Parellada, V. Puig, and G. Cembrano, Leak localization in water distribution networks using pressure and data-driven classifier approach, Water, 12(2019), No. 1, art. No. 54. doi: 10.3390/w12010054
    [18]
    B. Wang, Y.B. Guo, D.G. Wang, Y.S. Zhang, R.Y. He, and J.Z. Chen, Prediction model of natural gas pipeline crack evolution based on optimized DCNN-LSTM, Mech. Syst. Signal Process., 181(2022), art. No. 109557. doi: 10.1016/j.ymssp.2022.109557
    [19]
    X. Li, M. Guo, R. Zhang, and G. Chen, A data-driven prediction model for maximum pitting corrosion depth of subsea oil pipelines using SSA-LSTM approach, Ocean. Eng., 261(2022), art. No. 112062. doi: 10.1016/j.oceaneng.2022.112062
    [20]
    C. Spandonidis, P. Theodoropoulos, F. Giannopoulos, N. Galiatsatos, and A. Petsa, Evaluation of deep learning approaches for oil & gas pipeline leak detection using wireless sensor networks, Eng. Appl. Artif. Intell., 113(2022), art. No. 104890. doi: 10.1016/j.engappai.2022.104890
    [21]
    H.Y. Cheng, S.C. Wu, X.Q. Zhang, and A.X. Wu, Effect of particle gradation characteristics on yield stress of cemented paste backfill, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 10. doi: 10.1007/s12613-019-1865-y
    [22]
    R.C. Silva, Experimental characterization techniques for solid-liquid slurry flows in pipelines: A review, Processes, 10(2022), No. 3, art. No. 597. doi: 10.3390/pr10030597
    [23]
    P.A. Gorshkalev, M.D. Chernosvitov, and D.S. Nikitina, Comparing pipelines made of different materials for replacement of old on-site pipelines of Kinel pumping-filtration plant, IOP Conf. Ser.: Mater. Sci. Eng., 687(2019), No. 4, art. No. 044021. doi: 10.1088/1757-899X/687/4/044021
    [24]
    A. Sherstinsky, Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network, Physica D: Nonlinear Phenom., 404(2020), art. No. 132306. doi: 10.1016/j.physd.2019.132306
    [25]
    F.A. Gers, J. Schmidhuber, and F. Cummins, Learning to forget: Continual prediction with LSTM, Neural Comput., 12(2000), No. 10, p. 2451. doi: 10.1162/089976600300015015
    [26]
    C. Garbin, X.Q. Zhu, and O. Marques, Dropout vs. batch normalization: An empirical study of their impact to deep learning, Multimed. Tools Appl., 79(2020), No. 19-20, p. 12777. doi: 10.1007/s11042-019-08453-9
    [27]
    P. Rodríguez, M.A. Bautista, J. Gonzàlez, and S. Escalera, Beyond one-hot encoding: Lower dimensional target embedding, Image Vis. Comput., 75(2018), p. 21. doi: 10.1016/j.imavis.2018.04.004
    [28]
    S.M. LaValle, M.S. Branicky, and S.R. Lindemann, On the relationship between classical grid search and probabilistic roadmaps, Int. J. Robotics Res., 23(2004), No. 7-8, p. 673. doi: 10.1177/0278364904045481
    [29]
    Y. Yao, L. Rosasco, and A. Caponnetto, On early stopping in gradient descent learning, Constr Approx, 26(2007), No. 2, p. 289. doi: 10.1007/s00365-006-0663-2
    [30]
    B. Xiao, Z. Wen, F. Wu, L. Li, Z. Yang, and Q. Gao, A simple L-shape pipe flow test for practical rheological properties of backfill slurry: A case study, Powder Technol., 356(2019), p. 1008. doi: 10.1016/j.powtec.2019.09.012
    [31]
    P. Li, Y.B. Hou, and M.F. Cai, Factors influencing the pumpability of unclassified tailings slurry and its interval division, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 417. doi: 10.1007/s12613-019-1750-8
    [32]
    A.X. Wu, H. Jiao, H.J. Wang, et al., Status and development trends of paste disposal technology with ultra-fine unclassified tailings in China, [in] Paste 2011: Proceedings of the 14th International Seminar on Paste and Thickened Tailings, Perth, 2011, p. 477.
    [33]
    M.M. Saritas and A. Yasar, Performance analysis of ANN and naive Bayes classification algorithm for data classification, Int. J. Intell. Syst. Appl. Eng., 7(2019), No. 2, p. 88. doi: 10.18201/ijisae.2019252786
    [34]
    C.J. Mantas and J. Abellán, Credal-C4.5: Decision tree based on imprecise probabilities to classify noisy data, Expert Syst. Appl., 41(2014), No. 10, p. 4625. doi: 10.1016/j.eswa.2014.01.017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(5)

    Share Article

    Article Metrics

    Article Views(754) PDF Downloads(44) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return