Cite this article as: |
Bolin Xiao, Shengjun Miao, Daohong Xia, Huatao Huang, and Jingyu Zhang, Detecting the backfill pipeline blockage and leakage through an LSTM-based deep learning model, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1573-1583. https://doi.org/10.1007/s12613-022-2560-y |
Shengjun Miao E-mail: miaoshengjun@ustb.edu.cn
[1] |
M. Helinski, M. Fahey, and A. Fourie, Behavior of cemented paste backfill in two mine stopes: Measurements and modeling, J. Geotech. Geoenviron. Eng., 137(2011), No. 2, p. 171. doi: 10.1061/(ASCE)GT.1943-5606.0000418
|
[2] |
X. Zhao, A. Fourie, and C.C. Qi, Mechanics and safety issues in tailing-based backfill: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1165. doi: 10.1007/s12613-020-2004-5
|
[3] |
L. Liu, J. Xin, C. Huan, et al., Effect of curing time on the mesoscopic parameters of cemented paste backfill simulated using the particle flow code technique, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 590. doi: 10.1007/s12613-020-2007-2
|
[4] |
K. Been, E.T. Brown, and N. Hepworth, Liquefaction potential of paste fill at Neves Corvo Mine, Portugal, Min. Technol., 111(2002), No. 1, p. 47. doi: 10.1179/mnt.2002.111.1.47
|
[5] |
R. Cooke, Design procedure for hydraulic backfill distribution systems, J. South. Afr. Inst. Min. Metall., 101(2001), No. 2, p. 97.
|
[6] |
A.X. Wu, Z.E. Ruan, and J.D. Wang, Rheological behavior of paste in metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 717. doi: 10.1007/s12613-022-2423-6
|
[7] |
H.F. Lu, T. Iseley, S. Behbahani, and L.D. Fu, Leakage detection techniques for oil and gas pipelines: State-of-the-art, Tunnelling Underground Space Technol., 98(2020), art. No. 103249. doi: 10.1016/j.tust.2019.103249
|
[8] |
A. Mostafapour and S. Davoudi, Analysis of leakage in high pressure pipe using acoustic emission method, Appl. Acoust., 74(2013), No. 3, p. 335. doi: 10.1016/j.apacoust.2012.07.012
|
[9] |
S. El-Zahab, E. Mohammed Abdelkader, and T. Zayed, An accelerometer-based leak detection system, Mech. Syst. Signal Process., 108(2018), p. 276. doi: 10.1016/j.ymssp.2018.02.030
|
[10] |
P. Stajanca, S. Chruscicki, T. Homann, S. Seifert, D. Schmidt, and A. Habib, Detection of leak-induced pipeline vibrations using fiber-optic distributed acoustic sensing, Sensors (Basel), 18(2018), No. 9, art. No. 2841.
|
[11] |
D. Zaman, M.K. Tiwari, A.K. Gupta, and D. Sen, A review of leakage detection strategies for pressurised pipeline in steady-state, Eng. Fail. Anal., 109(2020), art. No. 104264. doi: 10.1016/j.engfailanal.2019.104264
|
[12] |
Y.M. Yan, Y.T. Liang, H.R. Zhang, et al., A two-stage optimization method for unmanned aerial vehicle inspection of an oil and gas pipeline network, Pet. Sci., 16(2019), No. 2, p. 458. doi: 10.1007/s12182-019-0305-y
|
[13] |
V.G. Bondur, Aerospace methods and technologies for monitoring oil and gas areas and facilities, Izv. Atmos. Ocean. Phys., 47(2011), No. 9, p. 1007. doi: 10.1134/S0001433811090039
|
[14] |
M.A. Adegboye, W.K. Fung, and A. Karnik, Recent advances in pipeline monitoring and oil leakage detection technologies: Principles and approaches, Sensors (Basel), 19(2019), No. 11, art. No. 2548.
|
[15] |
N. Aziz, S.A.K. Tanoli, and F. Nawaz, A programmable logic controller based remote pipeline monitoring system, Process. Saf. Environ. Prot., 149(2021), p. 894. doi: 10.1016/j.psep.2021.03.045
|
[16] |
L. Yang and Q. Zhao, A novel PPA method for fluid pipeline leak detection based on OPELM and bidirectional LSTM, IEEE Access, 8(2020), p. 107185. doi: 10.1109/ACCESS.2020.3000960
|
[17] |
C.C. Sun, B. Parellada, V. Puig, and G. Cembrano, Leak localization in water distribution networks using pressure and data-driven classifier approach, Water, 12(2019), No. 1, art. No. 54. doi: 10.3390/w12010054
|
[18] |
B. Wang, Y.B. Guo, D.G. Wang, Y.S. Zhang, R.Y. He, and J.Z. Chen, Prediction model of natural gas pipeline crack evolution based on optimized DCNN-LSTM, Mech. Syst. Signal Process., 181(2022), art. No. 109557. doi: 10.1016/j.ymssp.2022.109557
|
[19] |
X. Li, M. Guo, R. Zhang, and G. Chen, A data-driven prediction model for maximum pitting corrosion depth of subsea oil pipelines using SSA-LSTM approach, Ocean. Eng., 261(2022), art. No. 112062. doi: 10.1016/j.oceaneng.2022.112062
|
[20] |
C. Spandonidis, P. Theodoropoulos, F. Giannopoulos, N. Galiatsatos, and A. Petsa, Evaluation of deep learning approaches for oil & gas pipeline leak detection using wireless sensor networks, Eng. Appl. Artif. Intell., 113(2022), art. No. 104890. doi: 10.1016/j.engappai.2022.104890
|
[21] |
H.Y. Cheng, S.C. Wu, X.Q. Zhang, and A.X. Wu, Effect of particle gradation characteristics on yield stress of cemented paste backfill, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 10. doi: 10.1007/s12613-019-1865-y
|
[22] |
R.C. Silva, Experimental characterization techniques for solid-liquid slurry flows in pipelines: A review, Processes, 10(2022), No. 3, art. No. 597. doi: 10.3390/pr10030597
|
[23] |
P.A. Gorshkalev, M.D. Chernosvitov, and D.S. Nikitina, Comparing pipelines made of different materials for replacement of old on-site pipelines of Kinel pumping-filtration plant, IOP Conf. Ser.: Mater. Sci. Eng., 687(2019), No. 4, art. No. 044021. doi: 10.1088/1757-899X/687/4/044021
|
[24] |
A. Sherstinsky, Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network, Physica D: Nonlinear Phenom., 404(2020), art. No. 132306. doi: 10.1016/j.physd.2019.132306
|
[25] |
F.A. Gers, J. Schmidhuber, and F. Cummins, Learning to forget: Continual prediction with LSTM, Neural Comput., 12(2000), No. 10, p. 2451. doi: 10.1162/089976600300015015
|
[26] |
C. Garbin, X.Q. Zhu, and O. Marques, Dropout vs. batch normalization: An empirical study of their impact to deep learning, Multimed. Tools Appl., 79(2020), No. 19-20, p. 12777. doi: 10.1007/s11042-019-08453-9
|
[27] |
P. Rodríguez, M.A. Bautista, J. Gonzàlez, and S. Escalera, Beyond one-hot encoding: Lower dimensional target embedding, Image Vis. Comput., 75(2018), p. 21. doi: 10.1016/j.imavis.2018.04.004
|
[28] |
S.M. LaValle, M.S. Branicky, and S.R. Lindemann, On the relationship between classical grid search and probabilistic roadmaps, Int. J. Robotics Res., 23(2004), No. 7-8, p. 673. doi: 10.1177/0278364904045481
|
[29] |
Y. Yao, L. Rosasco, and A. Caponnetto, On early stopping in gradient descent learning, Constr Approx, 26(2007), No. 2, p. 289. doi: 10.1007/s00365-006-0663-2
|
[30] |
B. Xiao, Z. Wen, F. Wu, L. Li, Z. Yang, and Q. Gao, A simple L-shape pipe flow test for practical rheological properties of backfill slurry: A case study, Powder Technol., 356(2019), p. 1008. doi: 10.1016/j.powtec.2019.09.012
|
[31] |
P. Li, Y.B. Hou, and M.F. Cai, Factors influencing the pumpability of unclassified tailings slurry and its interval division, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 417. doi: 10.1007/s12613-019-1750-8
|
[32] |
A.X. Wu, H. Jiao, H.J. Wang, et al., Status and development trends of paste disposal technology with ultra-fine unclassified tailings in China, [in] Paste 2011: Proceedings of the 14th International Seminar on Paste and Thickened Tailings, Perth, 2011, p. 477.
|
[33] |
M.M. Saritas and A. Yasar, Performance analysis of ANN and naive Bayes classification algorithm for data classification, Int. J. Intell. Syst. Appl. Eng., 7(2019), No. 2, p. 88. doi: 10.18201/ijisae.2019252786
|
[34] |
C.J. Mantas and J. Abellán, Credal-C4.5: Decision tree based on imprecise probabilities to classify noisy data, Expert Syst. Appl., 41(2014), No. 10, p. 4625. doi: 10.1016/j.eswa.2014.01.017
|