Chuanchang Li, Weixuan Wang, Xiaoliang Zeng, Chunxuan Liu,  and Rong Sun, Emerging low-density polyethylene/paraffin wax/aluminum composite as a form-stable phase change thermal interface material, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 772-781. https://doi.org/10.1007/s12613-022-2565-6
Cite this article as:
Chuanchang Li, Weixuan Wang, Xiaoliang Zeng, Chunxuan Liu,  and Rong Sun, Emerging low-density polyethylene/paraffin wax/aluminum composite as a form-stable phase change thermal interface material, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 772-781. https://doi.org/10.1007/s12613-022-2565-6
Research Article

Emerging low-density polyethylene/paraffin wax/aluminum composite as a form-stable phase change thermal interface material

+ Author Affiliations
  • Corresponding author:

    Chuanchang Li    E-mail: chuanchangli@csust.edu.cn

  • Received: 16 July 2022Revised: 22 October 2022Accepted: 25 October 2022Available online: 26 October 2022
  • Thermal interface materials (TIMs) play a vital role in the thermal management of electronic devices and can significantly reduce thermal contact resistance (TCR). The TCR between the solid–liquid contact surface is much smaller than that of the solid–solid contact surface, but conventional solid–liquid phase change materials are likely to cause serious leakage. Therefore, this work has prepared a new form-stable phase change thermal interface material. Through the melt blending of paraffin wax (PW) and low-density polyethylene (LDPE), the stability is improved and it has an excellent coating effect on PW. The addition of aluminum (Al) powder improves the low thermal conductivity of PW/LDPE, and the addition of 15wt% Al powder improves the thermal conductivity of the internal structure of the matrix by 67%. In addition, the influence of the addition of Al powder on the internal structure, thermal properties, and phase change behavior of the PW/LDPE matrix was systematically studied. The results confirmed that the addition of Al powder improved the thermal conductivity of the material without a significant impact on other properties, and the thermal conductivity increased with the increase of Al addition. Therefore, morphologically stable PW/LDPE/Al is an important development direction for TIMs.
  • loading
  • [1]
    Z.H. Wu, C. Xu, C.Q. Ma, Z.B. Liu, H.M. Cheng, and W.C. Ren, Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites, Adv. Mater., 31(2019), No. 19, art. No. 1900199. doi: 10.1002/adma.201900199
    [2]
    J.L. Smoyer and P.M. Norris, Brief historical perspective in thermal management and the shift toward management at the nanoscale, Heat Transfer Eng., 40(2019), No. 3-4, p. 269. doi: 10.1080/01457632.2018.1426265
    [3]
    N. Mehra, L.W. Mu, T. Ji, et al., Thermal transport in polymeric materials and across composite interfaces, Appl. Mater. Today, 12(2018), p. 92. doi: 10.1016/j.apmt.2018.04.004
    [4]
    M.J. Gibbons, M. Marengo, and T. Persoons, A review of heat pipe technology for foldable electronic devices, Appl. Therm. Eng., 194(2021), art. No. 117087. doi: 10.1016/j.applthermaleng.2021.117087
    [5]
    Y.T. Zheng, J.J. Wei, J.L. Liu, et al., Carbon materials: The burgeoning promise in electronics, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 404. doi: 10.1007/s12613-021-2358-3
    [6]
    K.A. Samah, M.R. Sahar, M. Yusop, and M.F. Omar, Phase modification and dielectric properties of a cullet–paper ash–Kaolin clay-based ceramic, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 350. doi: 10.1007/s12613-018-1578-7
    [7]
    N. Guo, W.J. Huo, X.Y. Dong, et al., A review on 3D zinc anodes for zinc ion batteries, Small Methods, 6(2022), No. 9, art. No. 2200597. doi: 10.1002/smtd.202200597
    [8]
    J. Hansson, T.M.J. Nilsson, L.L. Ye, and J. Liu, Novel nanostructured thermal interface materials: A review, Int. Mater. Rev., 63(2018), No. 1, p. 22. doi: 10.1080/09506608.2017.1301014
    [9]
    Y.S. Zhao, X.L. Zeng, L.L. Ren, X.N. Xia, X.L. Zeng, and J. Zhou, Heat conduction of electrons and phonons in thermal interface materials, Mater. Chem. Front., 5(2021), No. 15, p. 5617. doi: 10.1039/D0QM01136C
    [10]
    P. Zhu, P.P. Wang, P.Z. Shao, et al., Research progress in interface modification and thermal conduction behavior of diamond/metal composites, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 200. doi: 10.1007/s12613-021-2339-6
    [11]
    J.P. Gwinn and R.L. Webb, Performance and testing of thermal interface materials, Microelectron. J., 34(2003), No. 3, p. 215. doi: 10.1016/S0026-2692(02)00191-X
    [12]
    B. Wicklein, A. Kocjan, G. Salazar-Alvarez, et al., Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide, Nat. Nanotechnol., 10(2015), No. 3, p. 277. doi: 10.1038/nnano.2014.248
    [13]
    E.B. Moustafa and M.A. Taha, Evaluation of the microstructure, thermal and mechanical properties of Cu/SiC nanocomposites fabricated by mechanical alloying, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 475. doi: 10.1007/s12613-020-2176-z
    [14]
    Z.Q. Liu, Experimental study on the thermal management of batteries based on the coupling of composite phase change materials and liquid cooling, Appl. Therm. Eng., 185(2021), art. No. 116415. doi: 10.1016/j.applthermaleng.2020.116415
    [15]
    D.Y. Zhang, C.C. Li, N.Z. Lin, B.S. Xie, and J. Chen, Mica-stabilized polyethylene glycol composite phase change materials for thermal energy storage, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 168. doi: 10.1007/s12613-021-2357-4
    [16]
    M.C.K. Swamy and Satyanarayan, A review of the performance and characterization of conventional and promising thermal interface materials for electronic package applications, J. Electron. Mater., 48(2019), No. 12, p. 7623. doi: 10.1007/s11664-019-07623-7
    [17]
    Y.C. Zhou, S.Q. Wu, Y.H. Long, et al., Recent advances in thermal interface materials, ES Mater. Manuf., 7(2020), p. 4.
    [18]
    C.P. Feng, Recent advances in polymer-based thermal interface materials for thermal management: A mini-review, Compos. Commun., 22(2020), art. No. 100528. doi: 10.1016/j.coco.2020.100528
    [19]
    L.M. Peng, Z. Xu, W.Y. Wang, et al., Leakage-proof and malleable polyethylene wax vitrimer phase change materials for thermal interface management, ACS Appl. Energy Mater., 4(2021), No. 10, p. 11173. doi: 10.1021/acsaem.1c02052
    [20]
    R.R. Cao, Fabrication and characterization of novel shape-stabilized synergistic phase change materials based on PHDA/GO composites, Energy, 138(2017), p. 157. doi: 10.1016/j.energy.2017.07.049
    [21]
    Y. Xu, M.J. Li, Z.J. Zheng, and X.D. Xue, Melting performance enhancement of phase change material by a limited amount of metal foam: Configurational optimization and economic assessment, Appl. Energy, 212(2018), p. 868. doi: 10.1016/j.apenergy.2017.12.082
    [22]
    Y.X. Lin, C.Q. Zhu, G. Alva, and G.Y. Fang, Palmitic acid/polyvinyl butyral/expanded graphite composites as form-stable phase change materials for solar thermal energy storage, Appl. Energy, 228(2018), p. 1801. doi: 10.1016/j.apenergy.2018.07.068
    [23]
    J. Yang, Reduced graphene oxide and zirconium carbide co-modified melamine sponge/paraffin wax composites as new form-stable phase change materials for photothermal energy conversion and storage, Appl. Therm. Eng., 163(2019), art. No. 114412. doi: 10.1016/j.applthermaleng.2019.114412
    [24]
    X.N. Fei, S.J. Liu, B.L. Zhang, and H.B. Zhao, Effect of alkyltriethoxysilane on the performance of sodium silicate-based silica shell phase change microcapsules, Colloids Surf. A, 608(2021), art. No. 125503. doi: 10.1016/j.colsurfa.2020.125503
    [25]
    B.Y. Zhang, Z. Zhang, S. Kapar, et al., Microencapsulation of phase change materials with polystyrene/cellulose nanocrystal hybrid shell via Pickering emulsion polymerization, ACS Sustainable Chem. Eng., 7(2019), No. 21, p. 17756. doi: 10.1021/acssuschemeng.9b04134
    [26]
    A. Serrano, Reducing heat loss through the building envelope by using polyurethane foams containing thermoregulating microcapsules, Appl. Therm. Eng., 103(2016), p. 226. doi: 10.1016/j.applthermaleng.2016.04.098
    [27]
    Y.F. Geng, L. Pan, Z.Y. Peng, et al., Electrolyte additive engineering for aqueous Zn ion batteries, Energy Storage Mater., 51(2022), p. 733. doi: 10.1016/j.ensm.2022.07.017
    [28]
    W.W. Wang, Y.B. Cai, M.Y. Du, et al., Ultralight and flexible carbon foam-based phase change composites with high latent-heat capacity and photothermal conversion capability, ACS Appl. Mater. Interfaces, 11(2019), No. 35, p. 31997. doi: 10.1021/acsami.9b10330
    [29]
    X.C. Wang, G.Y. Li, G. Hong, Q. Guo, and X.T. Zhang, Graphene aerogel templated fabrication of phase change microspheres as thermal buffers in microelectronic devices, ACS Appl. Mater. Interfaces, 9(2017), No. 47, p. 41323. doi: 10.1021/acsami.7b13969
    [30]
    X. Chen, P. Cheng, Z.D. Tang, X.L. Xu, H.Y. Gao, and G. Wang, Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion, Adv. Sci., 8(2021), No. 9, art. No. 2001274. doi: 10.1002/advs.202001274
    [31]
    M.M. Rahman, A.O. Oni, E. Gemechu, and A. Kumar, Assessment of energy storage technologies: A review, Energy Convers. Manage., 223(2020), art. No. 113295. doi: 10.1016/j.enconman.2020.113295
    [32]
    E. Alehosseini and S.M. Jafari, Nanoencapsulation of phase change materials (PCMs) and their applications in various fields for energy storage and management, Adv. Colloid Interface Sci., 283(2020), art. No. 102226. doi: 10.1016/j.cis.2020.102226
    [33]
    A. Schweighuber, A. Felgel-Farnholz, T. Bögl, J. Fischer, and W. Buchberger, Investigations on the influence of multiple extrusion on the degradation of polyolefins, Polym. Degrad. Stab., 192(2021), art. No. 109689. doi: 10.1016/j.polymdegradstab.2021.109689
    [34]
    C.M. Geiselhart, W.W. Xue, C. Barner-Kowollik, and H. Mutlu, Degradable redox-responsive polyolefins, Macromolecules, 54(2021), No. 4, p. 1775. doi: 10.1021/acs.macromol.1c00010
    [35]
    P. Awasthi and S.S. Banerjee, Fused deposition modeling of thermoplastic elastomeric materials: Challenges and opportunities, Addit. Manuf., 46(2021), art. No. 102177.
    [36]
    Z.X. Peng, K.H. Xian, Y. Cui, et al., Thermoplastic elastomer tunes phase structure and promotes stretchability of high-efficiency organic solar cells, Adv. Mater., 33(2021), No. 49, art. No. 2106732. doi: 10.1002/adma.202106732
    [37]
    P. Sobolčiak, M. Mrlik, A. Popelka, et al., Foamed phase change materials based on recycled polyethylene/paraffin wax blends, Polymers, 13(2021), No. 12, art. No. 1987. doi: 10.3390/polym13121987
    [38]
    B.X. Li, T.X. Liu, L.Y. Hu, Y.F. Wang, and L.N. Gao, Fabrication and properties of microencapsulated paraffin@SiO2 phase change composite for thermal energy storage, ACS Sustainable Chem. Eng., 1(2013), No. 3, p. 374. doi: 10.1021/sc300082m
    [39]
    D. Kim, I. Park, J. Seo, H. Han, and W. Jang, Effects of the paraffin wax (PW) content on the thermal and permeation properties of the LDPE/PW composite films, J. Polym. Res., 22(2015), No. 2, p. 1. doi: 10.1007/s10965-014-0642-x
    [40]
    Y. Wang, H. Shi, T.D. Xia, T. Zhang, and H.X. Feng, Fabrication and performances of microencapsulated paraffin composites with polymethylmethacrylate shell based on ultraviolet irradiation-initiated, Mater. Chem. Phys., 135(2012), No. 1, p. 181. doi: 10.1016/j.matchemphys.2012.04.050
    [41]
    H. Kwon, D. Kim, J. Seo, and H. Han, Enhanced moisture barrier films based on EVOH/exfoliated graphite (EGn) nanocomposite films by solution blending, Macromol. Res., 21(2013), No. 9, p. 987. doi: 10.1007/s13233-013-1124-4
    [42]
    I. Arcan and A. Yemenicioğlu, Development of flexible zein-wax composite and zein-fatty acid blend films for controlled release of lysozyme, Food Res. Int., 51(2013), No. 1, p. 208. doi: 10.1016/j.foodres.2012.12.011
    [43]
    S. Bahrami, M. Mizani, M. Honarvar, and M.A. Noghabi, Low molecular weight paraffin, as phase change material, in physical and micro-structural changes of novel LLDPE/LDPE/paraffin composite pellets and films, Iran. Polym. J., 26(2017), No. 11, p. 885. doi: 10.1007/s13726-017-0574-5
    [44]
    Q.Q. Huang, Thermal management of lithium-ion battery pack through the application of flexible form-stable composite phase change materials, Appl. Therm. Eng., 183(2021), art. No. 116151. doi: 10.1016/j.applthermaleng.2020.116151
    [45]
    J.A. Molefi, A.S. Luyt, and I. Krupa, Comparison of LDPE, LLDPE and HDPE as matrices for phase change materials based on a soft Fischer-Tropsch paraffin wax, Thermochim. Acta, 500(2010), No. 1-2, p. 88. doi: 10.1016/j.tca.2010.01.002
    [46]
    A.S. Luyt and I. Krupa, Thermal behaviour of low and high molecular weight paraffin waxes used for designing phase change materials, Thermochim. Acta, 467(2008), No. 1-2, p. 117. doi: 10.1016/j.tca.2007.11.001
    [47]
    C.Q. Liu, Thermal properties of a novel form-stable phase change thermal interface materials olefin block copolymer/paraffin filled with Al2O3, Int. J. Therm. Sci., 152(2020), art. No. 106293. doi: 10.1016/j.ijthermalsci.2020.106293
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(789) PDF Downloads(73) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return