Tongtong Cao, Yong Zhu, Yuyang Gao, Yan Yang, Gang Zhou, Xiaofei Cui, Chen Wen, Bin Jiang, Xiaodong Peng, and Fusheng Pan, Optimization on microstructure, mechanical properties and damping capacities of duplex structured Mg–8Li–4Zn–1Mn alloys, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 949-958. https://doi.org/10.1007/s12613-022-2572-7
Cite this article as:
Tongtong Cao, Yong Zhu, Yuyang Gao, Yan Yang, Gang Zhou, Xiaofei Cui, Chen Wen, Bin Jiang, Xiaodong Peng, and Fusheng Pan, Optimization on microstructure, mechanical properties and damping capacities of duplex structured Mg–8Li–4Zn–1Mn alloys, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 949-958. https://doi.org/10.1007/s12613-022-2572-7
Research Article

Optimization on microstructure, mechanical properties and damping capacities of duplex structured Mg–8Li–4Zn–1Mn alloys

+ Author Affiliations
  • Corresponding authors:

    Yuyang Gao    E-mail: gaoyuyang@cqu.edu.cn

    Yan Yang    E-mail: yanyang@cqu.edu.cn

  • Received: 6 August 2022Revised: 23 October 2022Accepted: 8 November 2022Available online: 10 November 2022
  • Optimizing the mechanical properties and damping capacity of the duplex-structured Mg–Li–Zn–Mn alloy by tailoring the microstructure via hot extrusion was investigated. The results show that the Mg–8Li–4Zn–1Mn alloy is mainly composed of α-Mg, β-Li, Mg–Li–Zn, and Mn phases. The microstructure of the test alloy is refined owing to dynamic recrystallization (DRX) during hot extrusion. After hot extrusion, the crushed precipitates are uniformly distributed in the test alloy. The yield strength (YS), ultimate tensile strength (UTS), and elongation (EL) of as-extruded alloy reach 156 MPa, 208 MPa, and 32.3%, respectively, which are much better than that of as-cast alloy. Furthermore, the as-extruded and as-cast alloys both exhibit superior damping capacities, with the damping capacity ($ {Q}^{-1} $) of 0.030 and 0.033 at the strain amplitude of 2 × 10−3, respectively. The mechanical properties of the test alloy can be significantly improved by hot extrusion, whereas the damping capacities have no noticeable change, which indicates that the duplex-structured Mg–Li alloys with appropriate mechanical properties and damping properties can be obtained by alloying and hot extrusion.
  • loading
  • [1]
    Y. Yang, X.M. Xiong, J. Chen, X.D. Peng, D.L. Chen, and F.S. Pan, Research advances in magnesium and magnesium alloys worldwide in 2020, J. Magnes. Alloys, 9(2021), No. 3, p. 705. doi: 10.1016/j.jma.2021.04.001
    [2]
    L.X. Hong, R.X. Wang, and X.B. Zhang, Effects of Nd on microstructure and mechanical properties of as-cast Mg–12Gd–2Zn–xNd–0.4Zr alloys with stacking faults, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1570. doi: 10.1007/s12613-021-2264-8
    [3]
    J.F. Song, J. She, D.L. Chen, and F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, J. Magnes. Alloys, 8(2020), No. 1, p. 1. doi: 10.1016/j.jma.2020.02.003
    [4]
    J. Han, C. Wang, Y.M. Song, Z.Y. Liu, J.P. Sun, and J.Y. Zhao, Simultaneously improving mechanical properties and corrosion resistance of as-cast AZ91 Mg alloy by ultrasonic surface rolling, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1551. doi: 10.1007/s12613-021-2294-2
    [5]
    S.Y. Jin, X.C. Ma, R.Z. Wu, et al., Effect of carbonate additive on the microstructure and corrosion resistance of plasma electrolytic oxidation coating on Mg–9Li–3Al alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1453. doi: 10.1007/s12613-021-2377-0
    [6]
    T.C. Chang, J.Y. Wang, C.L. Chu, and S.Lee, Mechanical properties and microstructures of various Mg–Li alloys, Mater. Lett., 60(2006), No. 27, p. 3272. doi: 10.1016/j.matlet.2006.03.052
    [7]
    Y.H. Kim, J.H. Kim, H.S. Yu, J.W. Choi, and H.T.Son, Microstructure and mechanical properties of Mg–xLi–3Al–1Sn–0.4Mn alloys (x = 5, 8 and 11wt%), J. Alloys Compd., 583(2014), p. 15. doi: 10.1016/j.jallcom.2013.08.154
    [8]
    J.F. Wang, D.D. Xu, R.P. Lu, and F.S. Pan, Damping properties of as-cast Mg–xLi–1Al alloys with different phase composition, Trans. Nonferrous Met. Soc. China, 24(2014), No. 2, p. 334. doi: 10.1016/S1003-6326(14)63065-X
    [9]
    R.P. Lu, K. Jiao, N.T. Li, H. Hou, J.F. Wang, and Y.H. Zhao, Microstructure and damping properties of LPSO phase dominant Mg–Ni–Y and Mg–Zn–Ni–Y alloys, J. Magnes. Alloys, (2022). DOI: 10.1016/j.jma.2022.06.013
    [10]
    X.F. Huang, W.Z. Zhang, J.F. Wang, and W.W. Wei, A transmission electron microscopy investigation of defects in an Mg–Cu–Mn–Zn–Y damping alloy, J. Alloys Compd., 516(2012), p. 186. doi: 10.1016/j.jallcom.2011.12.035
    [11]
    C. Xu, J.H. Zhang, S.J. Liu, et al., Microstructure, mechanical and damping properties of Mg–Er–Gd–Zn alloy reinforced with stacking faults, Mater. Des., 79(2015), p. 53. doi: 10.1016/j.matdes.2015.04.037
    [12]
    H.S. Jiang, X.G. Qiao, M.Y. Zheng, K. Wu, C. Xu, and S. Kamado, The partial substitution of Y with Gd on microstructures and mechanical properties of as-cast and as-extruded Mg–10Zn–6Y–0.5Zr alloy, Mater. Charact., 135(2018), p. 96. doi: 10.1016/j.matchar.2017.11.025
    [13]
    H. Jafari, A.H.M. Tehrani, and M. Heydari, Effect of extrusion process on microstructure and mechanical and corrosion properties of biodegradable Mg–5Zn–1.5Y magnesium alloy, Int. J. Miner. Metall. Mater, 29(2022), No. 3, p. 490. doi: 10.1007/s12613-021-2275-5
    [14]
    K. Guan, D. Egusa, E. Abe, et al., Microstructures and mechanical properties of as-cast Mg–Sm–Zn–Zr alloys with varying Gd contents, J. Magnes. Alloys, 10(2022), No. 5, p. 1220. doi: 10.1016/j.jma.2021.09.013
    [15]
    Z.Z. Jin, M. Zha, S.Q. Wang, et al., Alloying design and microstructural control strategies towards developing Mg alloys with enhanced ductility, J. Magnes. Alloys, 10(2022), No. 5, p. 1191. doi: 10.1016/j.jma.2022.04.002
    [16]
    Y.T. Tang, C. Zhang, L.B. Ren, et al., Effects of Y content and temperature on the damping capacity of extruded Mg–Y sheets, J. Magnes. Alloys, 7(2019), No. 3, p. 522. doi: 10.1016/j.jma.2019.05.003
    [17]
    J.F. Wang, P.F. Song, S. Gao, X.F. Huang, Z.Z. Shi, and F.S. Pan, Effects of Zn on the microstructure, mechanical properties, and damping capacity of Mg–Zn–Y–Zr alloys, Mater. Sci. Eng. A, 528(2011), No. 18, p. 5914. doi: 10.1016/j.msea.2011.04.002
    [18]
    L.H. Li, H.S. Cao, F.G. Qi, et al., Effect of heat treatment on microstructure and mechanical properties of Mg–5Zn–1Mn alloy tube, Metals, 10(2020), No. 3, art. No. 301. doi: 10.3390/met10030301
    [19]
    X. Ye, H.S. Cao, F.G. Qi, et al., Effect of Y addition on the microstructure and mechanical properties of ZM31 alloy, Materials, 13(2020), No. 3, art. No. 583. doi: 10.3390/ma13030583
    [20]
    C.H. Hou, F.G. Qi, Z.S. Ye, N. Zhao, D.F. Zhang, and X.P. Ouyang, Effects of Mn addition on the microstructure and mechanical properties of Mg–Zn–Sn alloys, Mater. Sci. Eng. A, 774(2020), art. No. 138933. doi: 10.1016/j.msea.2020.138933
    [21]
    R.P. Lu, K. Jiao, Y.H. Zhao, K. Li, K.Y. Yao, and H. Hou, Influence of long-period-stacking ordered structure on the damping capacities and mechanical properties of Mg–Zn–Y–Mn as-cast alloys, Materials, 13(2020), No. 20, art. No. 4654. doi: 10.3390/ma13204654
    [22]
    S.Q. Chen, X.P. Dong, R. Ma, L. Zhang, H. Wang, and Z.T. Fan, Effects of Cu on microstructure, mechanical properties and damping capacity of high damping Mg–1%Mn based alloy, Mater. Sci. Eng. A, 551(2012), p. 87. doi: 10.1016/j.msea.2012.04.098
    [23]
    X.R. Meng, R.Z. Wu, M.L. Zhang, L.B. Wu, and C.L. Cui, Microstructures and properties of superlight Mg–Li–Al–Zn wrought alloys, J. Alloys Compd., 486(2009), No. 1-2, p. 722. doi: 10.1016/j.jallcom.2009.07.047
    [24]
    J.F. Wang, Z.S. Wu, S. Gao, et al., Optimization of mechanical and damping properties of Mg–0.6Zr alloy by different extrusion processing, J. Magnes. Alloys, 3(2015), No. 1, p. 79. doi: 10.1016/j.jma.2015.02.001
    [25]
    G. Zhou, Y. Yang, L. Sun, et al., Tailoring the microstructure, mechanical properties and damping capacities of Mg–4Li–3Al–0.3Mn alloy via hot extrusion, J. Mater. Res. Technol., 19(2022), p. 4197. doi: 10.1016/j.jmrt.2022.06.100
    [26]
    S. Feng, W.C. Liu, J. Zhao, G.H. Wu, H.B. Zhang, W.J. Ding, Effect of extrusion ratio on microstructure and mechanical properties of Mg–8Li–3Al–2Zn–0.5Y alloy with duplex structure, Mater. Sci. Eng. A, 692(2017), p. 9. doi: 10.1016/j.msea.2017.03.059
    [27]
    G. Zhou, Y. Yang, H.Z. Zhang, et al., Microstructure and strengthening mechanism of hot-extruded ultralight Mg–Li–Al–Sn alloys with high strength, J. Mater. Sci. Technol., 103(2022), p. 186. doi: 10.1016/j.jmst.2021.07.009
    [28]
    H. Ji, G.H. Wu, W.C. Liu, X.L. Zhang, L. Zhang, and M.X. Wang, Origin of the age-hardening and age-softening response in Mg–Li–Zn based alloys, Acta Mater., 226(2022), art. No. 117673. doi: 10.1016/j.actamat.2022.117673
    [29]
    H. Ji, G.H. Wu, W.C. Liu, X.L. Liang, G.L. Liao, and D.H. Ding, Microstructure characterization and mechanical properties of the as-cast and as-extruded Mg–xLi–5Zn–0.5Er (x = 8, 10 and 12 wt%) alloys, Mater. Charact., 159(2020), art. No. 110008. doi: 10.1016/j.matchar.2019.110008
    [30]
    H.J. Deng, Y. Yang, M.M. Li, et al., Effect of Mn content on the microstructure and mechanical properties of Mg–6Li–4Zn–xMn alloys, Prog. Nat. Sci.: Mater. Int., 31(2021), No. 4, p. 583. doi: 10.1016/j.pnsc.2021.06.001
    [31]
    A. Yamamoto, T. Ashida, Y. Kouta, K.B. Kim, S. Fukumoto, and H.Tsubakino, Precipitation in Mg–(4–13)%Li–(4–5)%Zn ternary alloys, Mater. Trans., 44(2003), No. 4, p. 619. doi: 10.2320/matertrans.44.619
    [32]
    H. Ji, G.H. Wu, W.C. Liu, J.W. Sun, and W.J. Ding, Role of extrusion temperature on the microstructure evolution and tensile properties of an ultralight Mg–Li–Zn–Er alloy, J. Alloys Compd., 876(2021), art. No. 160181. doi: 10.1016/j.jallcom.2021.160181
    [33]
    Y.J. Ma, C.M. Liu, S.N. Jiang, Y.C. Wan, and Z.Y. Chen, Microstructure, mechanical properties and damping capacity of as-extruded Mg–1.5Gd alloys containing rare-earth textures, Mater. Charact., 189(2022), art. No. 111969. doi: 10.1016/j.matchar.2022.111969
    [34]
    H.F. Sun, C.J. Li, and W.B. Fang, Evolution of microstructure and mechanical properties of Mg–3.0Zn–0.2Ca–0.5Y alloy by extrusion at various temperatures, J. Mater. Process. Technol., 229(2016), p. 633. doi: 10.1016/j.jmatprotec.2015.10.021
    [35]
    S.F. Luo, N. Wang, Y. Wang, et al., Texture, microstructure and mechanical properties of an extruded Mg–10Gd–1Zn–0.4Zr alloy: Role of microstructure prior to extrusion, Mater. Sci. Eng. A, 849(2022), art. No. 143476. doi: 10.1016/j.msea.2022.143476
    [36]
    Z.M. Hua, B.Y. Wang, C. Wang, et al., Solute segregation assisted superplasticity in a low-alloyed Mg–Zn–Ca–Sn–Mn alloy, Materialia, 14(2020), art. No. 100918. doi: 10.1016/j.mtla.2020.100918
    [37]
    Q.H. Wang, H.W. Zhai, L.T. Liu, et al., Exploiting an as-extruded fine-grained Mg–Bi–Mn alloy with strength-ductility synergy via dilute Zn addition, J. Alloys Compd., 924(2022), art. No. 166337. doi: 10.1016/j.jallcom.2022.166337
    [38]
    M. Yuan, C. He, J. Zhao, et al., Microstructure evolution and mechanical properties of the Mg-Sm–Gd–Zn–Zr alloy during extrusion, J. Mater. Res. Technol., 15(2021), p. 2518. doi: 10.1016/j.jmrt.2021.09.080
    [39]
    J.F. Nie, Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys, Scripta Mater., 48(2003), No. 8, p. 1009. doi: 10.1016/S1359-6462(02)00497-9
    [40]
    P.F. Qin, Q. Yang, Y.Y. He, et al., Microstructure and mechanical properties of high-strength high-pressure die-cast Mg–4Al–3La–1Ca–0.3Mn alloy, Rare Met., 40(2021), No. 10, p. 2956. doi: 10.1007/s12598-020-01661-5
    [41]
    Z. Zhang, J.H. Zhang, J.S. Xie, et al., Developing a low-alloyed fine-grained Mg alloy with high strength-ductility based on dislocation evolution and grain boundary segregation, Scripta Mater., 209(2022), art. No. 114414. doi: 10.1016/j.scriptamat.2021.114414
    [42]
    A. Granato and K. Lücke, Application of dislocation theory to internal friction phenomena at high frequencies, J. Appl. Phys., 27(1956), No. 7, p. 789. doi: 10.1063/1.1722485
    [43]
    J.H. Jun, Damping behavior of Mg–Zn–Al casting alloys, Mater. Sci. Eng. A, 665(2016), p. 86. doi: 10.1016/j.msea.2016.04.024
    [44]
    B.K. Sugimoto, K. Niiya, T. Okamoto, and K. Kishitake, A study of damping capacity in magnesium alloys, Trans. JIM, 18(1977), No. 3, p. 277. doi: 10.2320/matertrans1960.18.277
    [45]
    X.P. Zhou, H.G. Yan, J.H. Chen, et al., Effects of the β1′ precipitates on mechanical and damping properties of ZK60 magnesium alloy, Mater. Sci. Eng. A, 804(2021), art. No. 140730. doi: 10.1016/j.msea.2020.140730
    [46]
    D. Wang, X.C. Ma, R.Z. Wu, et al., Effect of extrusion plus rolling on damping capacity and mechanical properties of Mg–Y–Er–Zn–Zr alloy, Mater. Sci. Eng. A, 830(2022), art. No. 142298. doi: 10.1016/j.msea.2021.142298
    [47]
    X.S. Hu, K. Wu, M.Y. Zheng, W.M. Gan, and X.J. Wang, Low frequency damping capacities and mechanical properties of Mg–Si alloys, Mater. Sci. Eng. A, 452-453(2007), p. 374. doi: 10.1016/j.msea.2006.10.099
    [48]
    D.Q. Wan, J.C. Wang, G.F. Wang, et al., Effect of Mn on damping capacities, mechanical properties, and corrosion behaviour of high damping Mg–3wt.%Ni based alloy, Mater. Sci. Eng. A, 494(2008), No. 1-2, p. 139. doi: 10.1016/j.msea.2008.04.011
    [49]
    J.H. Wang, Y. Jin, R.Z. Wu, et al., Simultaneous improvement of strength and damping capacities of Mg–8Li–6Y–2Zn alloy by heat treatment and hot rolling, J. Alloys Compd., 927(2022), art. No. 167027. doi: 10.1016/j.jallcom.2022.167027
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(834) PDF Downloads(51) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return