Jingdi Cao, Takuya Hhasegawa, Yusuke Asakura, Akira Yamakata, Peng Sun, Wenbin Cao,  and Shu Yin, Synthesis of crystal-phase and color tunable mixed anion co-doped titanium oxides and their controllable photocatalytic activity, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 2036-2043. https://doi.org/10.1007/s12613-022-2573-6
Cite this article as:
Jingdi Cao, Takuya Hhasegawa, Yusuke Asakura, Akira Yamakata, Peng Sun, Wenbin Cao,  and Shu Yin, Synthesis of crystal-phase and color tunable mixed anion co-doped titanium oxides and their controllable photocatalytic activity, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 2036-2043. https://doi.org/10.1007/s12613-022-2573-6
Research Article

Synthesis of crystal-phase and color tunable mixed anion co-doped titanium oxides and their controllable photocatalytic activity

+ Author Affiliations
  • Corresponding author:

    Shu Yin    E-mail: yin.shu.b5@tohoku.ac.jp

  • Received: 8 September 2022Revised: 14 October 2022Accepted: 15 November 2022Available online: 17 November 2022
  • B and N mixed anions co-doped titania with various crystal phases such as anatase, brookite, and rutile were successfully synthesized by a hydrothermal synthesis followed by heat treatment in an ammonia gas atmosphere at 550–650°C (denoted as BN-Ana_x, BN-Bro_x, and BN-Rut_x, x is the treatment temperature). The colors of as-prepared BN-Ana, BN-Bro, and BN-Rut are red, yellow-green, and cyan-green, respectively. The color changing mechanism of titania was related to their various band gap structure and the existence of B–N bonding. The nitridation temperature exhibits effective color changing compared to that of nitridation time. The different phases of the mixed anion co-doped titania possess different photocatalytic deNOx activity. The BN-Ana and BN-Rut show poor photocatalytic deNOx activity, while the BN-Bro shows excellent photocatalytic deNOx activity, better than that of standard titania photocatalyst Degussa P25. The colorful titania with low-photocatalytic activity is heavy metal elements free, indicating their possible applications as nontoxic color pigments or novel cosmetic raw materials.
  • loading
  • Supplementary Information-10.1007s12613-022-2573-6.docx
  • [1]
    P. Zhang, S. Yin, and T. Sato, Synthesis of high-activity TiO2 photocatalyst via environmentally friendly and novel microwave assisted hydrothermal process, Appl. Catal. B, 89(2009), No. 1-2, p. 118. doi: 10.1016/j.apcatb.2008.12.002
    [2]
    S. Yin and Y. Asakura, Recent research progress on mixed valence state tungsten based materials, Tungsten, 1(2019), No. 1, p. 5. doi: 10.1007/s42864-019-00001-0
    [3]
    A. Hermawan, N.L.W. Septiani, A. Taufik, B. Yuliarto, and S. Yin, Advanced strategies to improve performances of molybdenum-based gas sensors, Nano-Micro Lett., 13(2021), No. 1, art. No. 207. doi: 10.1007/s40820-021-00724-1
    [4]
    J. Cao, T. Hasegawa, Y. Asakura, et al., Synthesis and color tuning of titanium oxide inorganic pigment by phase control and mixed-anion co-doping, Adv. Powder Technol., 33(2022), No. 5, art. No. 103576. doi: 10.1016/j.apt.2022.103576
    [5]
    S. Yin, Creation of advanced optical responsive functionality of ceramics by green processes, J. Ceram. Soc. Jpn., 123(2015), No. 1441, p. 823. doi: 10.2109/jcersj2.123.823
    [6]
    Y. Xue and S. Yin, Element doping: A marvelous strategy for pioneering the smart applications of VO2, Nanoscale, 14(2022), No. 31, p. 11054. doi: 10.1039/D2NR01864K
    [7]
    A. Hermawan, T. Amrillah, A. Riapanitra, W.J. Ong, and S. Yin, Prospects and challenges of MXenes as emerging sensing materials for flexible and wearable breath-based biomarker diagnosis, Adv. Healthcare Mater., 10(2021), No. 20, art. No. 2100970. doi: 10.1002/adhm.202100970
    [8]
    S. Yin and T. Hasegawa, Morphology control of transition metal oxides by liquid-phase process and their material development, KONA Powder Part. J., 40(2023), p. 94. doi: 10.14356/kona.2023015
    [9]
    A. Hermawan, H. Son, Y. Asakura, T. Mori, and S. Yin, Synthesis of morphology controllable aluminum nitride by direct nitridation of γ-AlOOH in the presence of N2H4 and their sintering behavior, J. Asian Ceram. Soc., 6(2018), No. 1, p. 63. doi: 10.1080/21870764.2018.1439611
    [10]
    A. Hermawan, Y. Asakura, and S. Yin, Morphology control of aluminum nitride (AlN) for a novel high-temperature hydrogen sensor, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1560. doi: 10.1007/s12613-020-2143-8
    [11]
    S. Chu and A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature, 488(2012), No. 7411, p. 294. doi: 10.1038/nature11475
    [12]
    A.G. Olabi, M. Mahmoud, B. Soudan, T. Wilberforce, and M. Ramadan, Geothermal based hybrid energy systems, toward eco-friendly energy approaches, Renewable Energy, 147(2020), p. 2003. doi: 10.1016/j.renene.2019.09.140
    [13]
    N.L. Panwar, S.C. Kaushik, and S. Kothari, Role of renewable energy sources in environmental protection: A review, Renewable Sustainable Energy Rev., 15(2011), No. 3, p. 1513. doi: 10.1016/j.rser.2010.11.037
    [14]
    G. Liu, L.C. Yin, J. Wang, et al., A red anatase TiO2 photocatalyst for solar energy conversion, Energy Environ. Sci., 5(2012), No. 11, p. 9603. doi: 10.1039/c2ee22930g
    [15]
    G. Liu, J. Pan, L. Yin, et al., Heteroatom-modulated switching of photocatalytic hydrogen and oxygen evolution preferences of anatase TiO2 microspheres, Adv. Funct. Mater., 22(2012), No. 15, p. 3233. doi: 10.1002/adfm.201200414
    [16]
    D. Wang, S. Wang, B. Li, Z. Zhang, and Q. Zhang, Tunable band gap of N, V co-doped Ca:TiO2B (CaTi5O11) for visible-light photocatalysis, Int. J. Hydrogen Energy, 44(2019), No. 10, p. 4716. doi: 10.1016/j.ijhydene.2018.12.223
    [17]
    X. Li, Y. Liu, P. Yang, and Y. Shi, Visible light-driven photocatalysis of W, N co-doped TiO2, Particuology, 11(2013), No. 6, p. 732. doi: 10.1016/j.partic.2012.06.018
    [18]
    S. Komatsuda, Y. Asakura, J.J.M. Vequizo, A. Yamakata, and S. Yin, Enhanced photocatalytic NOx decomposition of visible-light responsive F-TiO2/(N, C)-TiO2 by charge transfer between F-TiO2 and (N, C)-TiO2 through their doping levels, Appl. Catal. B, 238(2018), p. 358. doi: 10.1016/j.apcatb.2018.07.038
    [19]
    H.T. Gao, Y.Y. Liu, C.H. Ding, D.M. Dai, and G.J. Liu, Synthesis, characterization, and theoretical study of N, S-codoped nano-TiO2 with photocatalytic activities, Int. J. Miner. Metall. Mater., 18(2011), No. 5, p. 606. doi: 10.1007/s12613-011-0485-y
    [20]
    N. Pienutsa, K. Yannawibut, J. Phattharaphongmanee, O. Thonganantakul, and S. Srinives, Titanium dioxide-graphene composite electrochemical sensor for detection of hexavalent chromium, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 529. doi: 10.1007/s12613-021-2338-7
    [21]
    H.H. Wang, W.X. Liu, J. Ma, et al., Design of (GO/TiO2)N one-dimensional photonic crystal photocatalysts with improved photocatalytic activity for tetracycline degradation, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 830. doi: 10.1007/s12613-019-1923-5
    [22]
    Z. Gu, Z. Cui, Z. Wang, et al., Carbon vacancies and hydroxyls in graphitic carbon nitride: Promoted photocatalytic NO removal activity and mechanism, Appl. Catal. B, 279(2020), art. No. 119376. doi: 10.1016/j.apcatb.2020.119376
    [23]
    C. Noda, Y. Asakura, K. Shiraki, A. Yamakata, and S. Yin, Synthesis of three-component C3N4/rGO/C-TiO2 photocatalyst with enhanced visible-light responsive photocatalytic deNO activity, Chem. Eng. J., 390(2020), art. No. 124616. doi: 10.1016/j.cej.2020.124616
    [24]
    Z. Gu, B. Zhang, Y. Asakura, et al., Alkali-assisted hydrothermal preparation of g-C3N4/rGO nanocomposites with highly enhanced photocatalytic NOx removal activity, Appl. Surf. Sci., 521(2020), art. No. 146213. doi: 10.1016/j.apsusc.2020.146213
    [25]
    H. Li, S. Yin, Y. Wang, and T. Sato, Current progress on persistent fluorescence-assisted composite photocatalysts, Funct. Mater. Lett., 6(2013), No. 6, art. No. 1330005. doi: 10.1142/S1793604713300053
    [26]
    X. Wu, S. Yin, Q. Dong, et al., UV, visible and near-infrared lights induced NOx destruction activity of (Yb, Er)-NaYF4/C-TiO2 composite, Sci. Rep., 3(2013), art. No. 2918. doi: 10.1038/srep02918
    [27]
    X. Wu, S. Yin, Q. Dong, and T. Sato, Blue/green/red colour emitting up-conversion phosphors coupled C-TiO2 composites with UV, visible and NIR responsive photocatalytic performance, Appl. Catal. B, 156-157(2014), p. 257. doi: 10.1016/j.apcatb.2014.03.028
    [28]
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293(2001), No. 5528, p. 269. doi: 10.1126/science.1061051
    [29]
    H. Lin, L. Li, M. Zhao, et al., Synthesis of high-quality brookite TiO2 single-crystalline nanosheets with specific facets exposed: Tuning catalysts from inert to highly reactive, J. Am. Chem. Soc., 134(2012), No. 20, p. 8328. doi: 10.1021/ja3014049
    [30]
    A. Inagawa and N. Uehara, Development of colorimetric analysis with smartphones-captured images based on RGB-spectrum conversion methods, Bunseki Kagaku, 69(2020), No. 12, p. 693. doi: 10.2116/bunsekikagaku.69.693
    [31]
    Japanese Industrial Standard, Fine ceramics (advanced ceramics, advanced technical ceramics)– Test Method for Air Purification Performance of Photocatalytic Materials–Part 1: Removal of Nitric Oxide, Japanese Standards Association, Tokyo, 2016.
    [32]
    V.V. Ivanov, I.A. Blokhina, and S.D. Kirik, Synthesis of TiB2 by carbothermal reduction of oxides at lowered temperatures, Russ J. Appl. Chem., 86(2013), No. 11, p. 1650. doi: 10.1134/S1070427213110049
    [33]
    A. Ghanbari, M. Sakaki, A. Faeghinia, M.S. Bafghi, and K. Yanagisawa, Synthesis of nanocrystalline TiB2 powder from TiO2, B2O3 and Mg reactants through microwave-assisted self-propagating high-temperature synthesis method, Bull. Mater. Sci., 39(2016), No. 4, p. 925. doi: 10.1007/s12034-016-1229-4
    [34]
    E. Finazzi, C. Di Valentin, and G. Pacchioni, Boron-doped anatase TiO2: Pure and hybrid DFT calculations, J. Phys. Chem. C, 113(2009), No. 1, p. 220. doi: 10.1021/jp8072238
    [35]
    Y. Du, Z. Wang, H. Chen, H.Y. Wang, G. Liu, and Y. Weng, Effect of trap states on photocatalytic properties of boron-doped anatase TiO2 microspheres studied by time-resolved infrared spectroscopy, Phys. Chem. Chem. Phys., 21(2019), No. 8, p. 4349. doi: 10.1039/C8CP06109B
    [36]
    C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, and E. Giamello, Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations, J. Phys. Chem. B, 109(2005), No. 23, p. 11414. doi: 10.1021/jp051756t
    [37]
    Z. Zhang, X. Wang, J. Long, Q. Gu, Z. Ding, and X. Fu, Nitrogen-doped titanium dioxide visible light photocatalyst: Spectroscopic identification of photoactive centers, J. Catal., 276(2010), No. 2, p. 201. doi: 10.1016/j.jcat.2010.07.033
    [38]
    T. Kanazawa, K. Kato, R. Yamaguchi, et al., Cobalt aluminate spinel as a cocatalyst for photocatalytic oxidation of water: Significant hole-trapping effect, ACS Catal., 10(2020), No. 9, p. 4960. doi: 10.1021/acscatal.0c00944
    [39]
    A. Miyoshi, K. Kato, T. Yokoi, et al., Nano vs. bulk rutile TiO2: N, F in Z-scheme overall water splitting under visible light, J. Mater. Chem. A, 8(2020), No. 24, p. 11996. doi: 10.1039/D0TA04450D
    [40]
    M. Landmann, E. Rauls, and W.G. Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO2, J. Phys. Condens. Matter, 24(2012), No. 19, art. No. 195503. doi: 10.1088/0953-8984/24/19/195503
    [41]
    C. Di Valentin, G. Pacchioni, and A. Selloni, Origin of the different photoactivity of N-doped anatase and rutile TiO2, Phys. Rev. B, 70(2004), No. 8, art. No. 085116. doi: 10.1103/PhysRevB.70.085116
    [42]
    A. Bjelajac, R. Petrović, M. Popović, et al., Doping of TiO2 nanotubes with nitrogen by annealing in ammonia for visible light activation: Influence of pre- and post-annealing in air, Thin Solid Films, 692(2019), art. No. 137598. doi: 10.1016/j.tsf.2019.137598
    [43]
    H.M. Hwang, S. Oh, J.H. Shim, et al., Phase-selective disordered anatase/ordered rutile interface system for visible-light-driven, metal-free CO2 reduction, ACS Appl. Mater. Interfaces, 11(2019), No. 39, p. 35693. doi: 10.1021/acsami.9b10837
    [44]
    G. Colón, M.C. Hidalgo, and J.A. Navio, Photocatalytic deactivation of commercial TiO2 samples during simultaneous photoreduction of Cr(VI) and photooxidation of salicylic acid, J. Photochem. Photobiol. A, 138(2001), No. 1, p. 79. doi: 10.1016/S1010-6030(00)00372-5
    [45]
    H. Yu, L. Liu, X. Wang, P. Wang, J. Yu, and Y. Wang, The dependence of photocatalytic activity and photoinduced self-stability of photosensitive AgI nanoparticles, Dalton Trans., 41(2012), No. 34, p. 10405. doi: 10.1039/c2dt30864a
    [46]
    X. Chen, L. Liu, P.Y. Yu, and S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science, 331(2011), No. 6018, p. 746. doi: 10.1126/science.1200448
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Share Article

    Article Metrics

    Article Views(488) PDF Downloads(32) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return