Cite this article as: |
Hui Tong, Yi Li, Gaoqiang Mao, Chaolei Wang, Wanjing Yu, Yong Liu, and Mudan Liu, Regeneration of spent LiFePO4 as a high-performance cathode material by a simultaneous coating and doping strategy, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1162-1170. https://doi.org/10.1007/s12613-022-2577-2 |
Wanjing Yu E-mail: yuwj2005@163.com
[1] |
B. He, G.Y. Li, J.J. Li, et al., MoSe2@CNT core–shell nanostructures as grain promoters featuring a direct Li2O2 formation/decomposition catalytic capability in lithium–oxygen batteries, Adv. Energy Mater., 11(2021), No. 18, art. No. 2003263. doi: 10.1002/aenm.202003263
|
[2] |
X. Yi, F.Q. Zhang, J. Wang, et al., Facile synthesis of N–C/Si@G nanocomposite as a high-performance anode material for Li-ion batteries, J. Alloys Compd., 872(2021), art. No. 159716. doi: 10.1016/j.jallcom.2021.159716
|
[3] |
G.Q. Mao, W.J. Yu, Q.J. Zhou, et al., Improved electrochemical performance of high-nickel cathode material with electronic conductor RuO2 as the protecting layer for lithium-ion batteries, Appl. Surf. Sci., 531(2020), art. No. 147245. doi: 10.1016/j.apsusc.2020.147245
|
[4] |
Y. Zhang, Y. Ouyang, L. Liu, et al., Synthesis and characterization of Na0.44MnO2 nanorods/graphene composite as cathode materials for sodium-ion batteries, J. Cent. South Univ., 26(2019), No. 6, p. 1510. doi: 10.1007/s11771-019-4107-6
|
[5] |
B. Gangaja, S. Nair, and D. Santhanagopalan, Reuse, recycle, and regeneration of LiFePO4 cathode from spent lithium-ion batteries for rechargeable lithium- and sodium-ion batteries, ACS Sustainable Chem. Eng., 9(2021), No. 13, p. 4711. doi: 10.1021/acssuschemeng.0c08487
|
[6] |
X.H. Yue, C.C. Zhang, W.B. Zhang, Y.F. Wang, and F.S. Zhang, Recycling phosphorus from spent LiFePO4 battery for multifunctional slow-release fertilizer preparation and simultaneous recovery of Lithium, Chem. Eng. J., 426(2021), art. No. 131311. doi: 10.1016/j.cej.2021.131311
|
[7] |
Y.X. Zheng, J.L. Ning, W. Liu, P.J. Hu, J.F. Lü, and J. Pang, Reaction behaviors of Pb and Zn sulfates during reduction roasting of Zn leaching residue and flotation of artificial sulfide minerals, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 358. doi: 10.1007/s12613-020-2029-9
|
[8] |
Q.K. Jing, J.L. Zhang, Y.B. Liu, W.J. Zhang, Y.Q. Chen, and C.Y. Wang, Direct regeneration of spent LiFePO4 cathode material by a green and efficient one-step hydrothermal method, ACS Sustainable Chem. Eng., 8(2020), No. 48, p. 17622. doi: 10.1021/acssuschemeng.0c07166
|
[9] |
X.L. Xu, G.Z. Li, Z.W. Fu, et al., Hydrogen reduced sodium vanadate nanowire arrays as electrode material of lithium-ion battery, J. Cent. South Univ., 26(2019), No. 6, p. 1540. doi: 10.1007/s11771-019-4110-y
|
[10] |
H.J. Bi, H.B. Zhu, L. Zu, et al., Low-temperature thermal pretreatment process for recycling inner core of spent lithium iron phosphate batteries, Waste Manage. Res., 39(2021), No. 1, p. 146. doi: 10.1177/0734242X20957403
|
[11] |
Q. Li, X. Lin, Q. Luo, et al., Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 32. doi: 10.1007/s12613-021-2337-8
|
[12] |
B. Makuza, Q.H. Tian, X.Y. Guo, K. Chattopadhyay, and D.W. Yu, Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review, J. Power Sources, 491(2021), art. No. 229622. doi: 10.1016/j.jpowsour.2021.229622
|
[13] |
J. Kumar, X. Shen, B. Li, H.Z. Liu, and J.M. Zhao, Selective recovery of Li and FePO4 from spent LiFePO4 cathode scraps by organic acids and the properties of the regenerated LiFePO4, Waste Manage., 113(2020), p. 32. doi: 10.1016/j.wasman.2020.05.046
|
[14] |
H.J. Bi, H.B. Zhu, J.L. Zhan, L. Zu, Y.X. Bai, and H.B. Li, Environmentally friendly automated line for recovering aluminium and lithium iron phosphate components of spent lithium-iron phosphate batteries, Waste Manage. Res., 39(2021), No. 9, p. 1164. doi: 10.1177/0734242X20982060
|
[15] |
K. He, Z.Y. Zhang, and F.S. Zhang, Selectively peeling of spent LiFePO4 cathode by destruction of crystal structure and binder matrix for efficient recycling of spent battery materials, J. Hazard. Mater., 386(2020), art. No. 121633. doi: 10.1016/j.jhazmat.2019.121633
|
[16] |
W.B. Lou, Y. Zhang, Y. Zhang, et al., Leaching performance of Al-bearing spent LiFePO4 cathode powder in H2SO4 aqueous solution, Trans. Nonferrous Met. Soc. China, 31(2021), No. 3, p. 817. doi: 10.1016/S1003-6326(21)65541-3
|
[17] |
Y.F. Meng, H.J. Liang, C.D. Zhao, et al., Concurrent recycling chemistry for cathode/anode in spent graphite/LiFePO4 batteries: Designing a unique cation/anion-co-workable dual-ion battery, J. Energy Chem., 64(2022), p. 166. doi: 10.1016/j.jechem.2021.04.047
|
[18] |
Y. Dai, Z.D. Xu, D. Hua, H.N. Gu, and N. Wang, Theoretical-molar Fe3+ recovering lithium from spent LiFePO4 batteries: An acid-free, efficient, and selective process, J. Hazard. Mater., 396(2020), art. No. 122707. doi: 10.1016/j.jhazmat.2020.122707
|
[19] |
Y.F. Song, B.Y. Xie, S.L. Song, et al., Regeneration of LiFePO4 from spent lithium-ion batteries via a facile process featuring acid leaching and hydrothermal synthesis, Green Chem., 23(2021), No. 11, p. 3963. doi: 10.1039/D1GC00483B
|
[20] |
T. Wang, X.S. Yu, M. Fan, et al., Direct regeneration of spent LiFePO4 via a graphite prelithiation strategy, Chem. Commun., 56(2019), No. 2, p. 245. doi: 10.1039/C9CC08155K
|
[21] |
H.J. Bi, H.B. Zhu, L. Zu, Y. Gao, S. Gao, and Y.X. Bai, Environment-friendly technology for recovering cathode materials from spent lithium iron phosphate batteries, Waste Manage. Res., 38(2020), No. 8, p. 911. doi: 10.1177/0734242X20931933
|
[22] |
Z. Li, L.H. He, Y.F. Zhu, and C. Yang, A green and cost-effective method for production of LiOH from spent LiFePO4, ACS Sustainable Chem. Eng., 8(2020), No. 42, p. 15915. doi: 10.1021/acssuschemeng.0c04960
|
[23] |
X.L. Li, J. Zhang, D.W. Song, J.S. Song, and L.Q. Zhang, Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries, J. Power Sources, 345(2017), p. 78. doi: 10.1016/j.jpowsour.2017.01.118
|
[24] |
Q. Liang, H.F. Yue, S.F. Wang, S.Y. Yang, K.H. Lam, and X.H. Hou, Recycling and crystal regeneration of commercial used LiFePO4 cathode materials, Electrochim. Acta, 330(2020), art. No. 135323. doi: 10.1016/j.electacta.2019.135323
|
[25] |
Q.F. Sun, X.L. Li, H.Z. Zhang, et al., Resynthesizing LiFePO4/C materials from the recycled cathode via a green full-solid route, J. Alloys Compd., 818(2020), art. No. 153292. doi: 10.1016/j.jallcom.2019.153292
|
[26] |
H. Choi, J.Y. Seo, and C.S. Kim, Effect of Mg shallow doping on structural and magnetic properties of LiFePO4 triphylite, IEEE Trans. Magn., 57(2021), No. 2, art. No. 2200305. doi: 10.1109/TMAG.2020.3014728
|
[27] |
D. Goonetilleke, T. Faulkner, V.K. Peterson, and N. Sharma, Structural evidence for Mg-doped LiFePO4 electrode polarisation in commercial Li-ion batteries, J. Power Sources, 394(2018), p. 1. doi: 10.1016/j.jpowsour.2018.05.024
|
[28] |
P.P. Xu, Q. Dai, H.P. Gao, et al., Efficient direct recycling of lithium-ion battery cathodes by targeted healing, Joule, 4(2020), No. 12, p. 2609. doi: 10.1016/j.joule.2020.10.008
|
[29] |
P.W. Liu, Y.N. Zhang, P. Dong, et al., Direct regeneration of spent LiFePO4 cathode materials with pre-oxidation and V-doping, J. Alloys Compd., 860(2021), art. No. 157909. doi: 10.1016/j.jallcom.2020.157909
|
[30] |
J. Li, Y. Wang, L.H. Wang, B. Liu, and H.M. Zhou, A facile recycling and regeneration process for spent LiFePO4 batteries, J. Mater. Sci. Mater. Electron., 30(2019), No. 15, p. 14580. doi: 10.1007/s10854-019-01830-y
|
[31] |
L.H. Wang, J. Li, H.M. Zhou, et al., Regeneration cathode material mixture from spent lithium iron phosphate batteries, J. Mater. Sci. Mater. Electron., 29(2018), No. 11, p. 9283. doi: 10.1007/s10854-018-8958-7
|
[32] |
Y.D. Huang, R.T. Yu, G.Q. Mao, et al., Unique FeP@C with polyhedral structure in situ coated with reduced graphene oxide as an anode material for lithium ion batteries, J. Alloys Compd., 841(2020), art. No. 155670. doi: 10.1016/j.jallcom.2020.155670
|
[33] |
J.C. Zheng, Y.Y. Yao, G.Q. Mao, et al., Iron–zinc sulfide Fe2Zn3S5/Fe1–xS@C derived from a metal–organic framework as a high performance anode material for lithium-ion batteries, J. Mater. Chem. A, 7(2019), No. 27, p. 16479. doi: 10.1039/C9TA03271A
|
[34] |
H. Tong, Q.J. Zhou, B. Zhang, X. Wang, and W.J. Yu, A novel core-shell structured nickel-rich layered cathode material for high-energy lithium-ion batteries, Eng. Sci., 8(2019), p. 25. doi: 10.30919/es8d502
|
[35] |
J.C. Zheng, Z. Yang, Z.J. He, H. Tong, W.J. Yu, and J.F. Zhang, In situ formed LiNi0.8Co0.15Al0.05O2@Li4SiO4 composite cathode material with high rate capability and long cycling stability for lithium-ion batteries, Nano Energy, 53(2018), p. 613. doi: 10.1016/j.nanoen.2018.09.014
|