Hui Tong, Yi Li, Gaoqiang Mao, Chaolei Wang, Wanjing Yu, Yong Liu, and Mudan Liu, Regeneration of spent LiFePO4 as a high-performance cathode material by a simultaneous coating and doping strategy, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1162-1170. https://doi.org/10.1007/s12613-022-2577-2
Cite this article as:
Hui Tong, Yi Li, Gaoqiang Mao, Chaolei Wang, Wanjing Yu, Yong Liu, and Mudan Liu, Regeneration of spent LiFePO4 as a high-performance cathode material by a simultaneous coating and doping strategy, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1162-1170. https://doi.org/10.1007/s12613-022-2577-2
Research Article

Regeneration of spent LiFePO4 as a high-performance cathode material by a simultaneous coating and doping strategy

+ Author Affiliations
  • Corresponding author:

    Wanjing Yu    E-mail: yuwj2005@163.com

  • Received: 10 August 2022Revised: 3 November 2022Accepted: 24 November 2022Available online: 25 November 2022
  • With the number of decommissioned electric vehicles increasing annually, a large amount of discarded power battery cathode material is in urgent need of treatment. However, common leaching methods for recovering metal salts are economically inefficient and polluting. Meanwhile, the recycled material obtained by lithium remediation alone has limited performance in cycling stability. Herein, a short method of solid-phase reduction is developed to recover spent LiFePO4 by simultaneously introducing Mg2+ ions for hetero-atom doping. Issues of particle agglomeration, carbon layer breakage, lithium loss, and Fe3+ defects in spent LiFePO4 are also addressed. Results show that Mg2+ addition during regeneration can remarkably enhance the crystal structure stability and improve the Li+ diffusion coefficient. The regenerated LiFePO4 exhibits significantly improved electrochemical performance with a specific discharge capacity of 143.2 mAh·g−1 at 0.2 C, and its capacity retention is extremely increased from 37.9% to 98.5% over 200 cycles at 1 C. Especially, its discharge capacity can reach 95.5 mAh·g−1 at 10 C, which is higher than that of spent LiFePO4 (55.9 mAh·g−1). All these results show that the proposed regeneration strategy of simultaneous carbon coating and Mg2+ doping is suitable for the efficient treatment of spent LiFePO4.
  • loading
  • [1]
    B. He, G.Y. Li, J.J. Li, et al., MoSe2@CNT core–shell nanostructures as grain promoters featuring a direct Li2O2 formation/decomposition catalytic capability in lithium–oxygen batteries, Adv. Energy Mater., 11(2021), No. 18, art. No. 2003263. doi: 10.1002/aenm.202003263
    [2]
    X. Yi, F.Q. Zhang, J. Wang, et al., Facile synthesis of N–C/Si@G nanocomposite as a high-performance anode material for Li-ion batteries, J. Alloys Compd., 872(2021), art. No. 159716. doi: 10.1016/j.jallcom.2021.159716
    [3]
    G.Q. Mao, W.J. Yu, Q.J. Zhou, et al., Improved electrochemical performance of high-nickel cathode material with electronic conductor RuO2 as the protecting layer for lithium-ion batteries, Appl. Surf. Sci., 531(2020), art. No. 147245. doi: 10.1016/j.apsusc.2020.147245
    [4]
    Y. Zhang, Y. Ouyang, L. Liu, et al., Synthesis and characterization of Na0.44MnO2 nanorods/graphene composite as cathode materials for sodium-ion batteries, J. Cent. South Univ., 26(2019), No. 6, p. 1510. doi: 10.1007/s11771-019-4107-6
    [5]
    B. Gangaja, S. Nair, and D. Santhanagopalan, Reuse, recycle, and regeneration of LiFePO4 cathode from spent lithium-ion batteries for rechargeable lithium- and sodium-ion batteries, ACS Sustainable Chem. Eng., 9(2021), No. 13, p. 4711. doi: 10.1021/acssuschemeng.0c08487
    [6]
    X.H. Yue, C.C. Zhang, W.B. Zhang, Y.F. Wang, and F.S. Zhang, Recycling phosphorus from spent LiFePO4 battery for multifunctional slow-release fertilizer preparation and simultaneous recovery of Lithium, Chem. Eng. J., 426(2021), art. No. 131311. doi: 10.1016/j.cej.2021.131311
    [7]
    Y.X. Zheng, J.L. Ning, W. Liu, P.J. Hu, J.F. Lü, and J. Pang, Reaction behaviors of Pb and Zn sulfates during reduction roasting of Zn leaching residue and flotation of artificial sulfide minerals, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 358. doi: 10.1007/s12613-020-2029-9
    [8]
    Q.K. Jing, J.L. Zhang, Y.B. Liu, W.J. Zhang, Y.Q. Chen, and C.Y. Wang, Direct regeneration of spent LiFePO4 cathode material by a green and efficient one-step hydrothermal method, ACS Sustainable Chem. Eng., 8(2020), No. 48, p. 17622. doi: 10.1021/acssuschemeng.0c07166
    [9]
    X.L. Xu, G.Z. Li, Z.W. Fu, et al., Hydrogen reduced sodium vanadate nanowire arrays as electrode material of lithium-ion battery, J. Cent. South Univ., 26(2019), No. 6, p. 1540. doi: 10.1007/s11771-019-4110-y
    [10]
    H.J. Bi, H.B. Zhu, L. Zu, et al., Low-temperature thermal pretreatment process for recycling inner core of spent lithium iron phosphate batteries, Waste Manage. Res., 39(2021), No. 1, p. 146. doi: 10.1177/0734242X20957403
    [11]
    Q. Li, X. Lin, Q. Luo, et al., Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 32. doi: 10.1007/s12613-021-2337-8
    [12]
    B. Makuza, Q.H. Tian, X.Y. Guo, K. Chattopadhyay, and D.W. Yu, Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review, J. Power Sources, 491(2021), art. No. 229622. doi: 10.1016/j.jpowsour.2021.229622
    [13]
    J. Kumar, X. Shen, B. Li, H.Z. Liu, and J.M. Zhao, Selective recovery of Li and FePO4 from spent LiFePO4 cathode scraps by organic acids and the properties of the regenerated LiFePO4, Waste Manage., 113(2020), p. 32. doi: 10.1016/j.wasman.2020.05.046
    [14]
    H.J. Bi, H.B. Zhu, J.L. Zhan, L. Zu, Y.X. Bai, and H.B. Li, Environmentally friendly automated line for recovering aluminium and lithium iron phosphate components of spent lithium-iron phosphate batteries, Waste Manage. Res., 39(2021), No. 9, p. 1164. doi: 10.1177/0734242X20982060
    [15]
    K. He, Z.Y. Zhang, and F.S. Zhang, Selectively peeling of spent LiFePO4 cathode by destruction of crystal structure and binder matrix for efficient recycling of spent battery materials, J. Hazard. Mater., 386(2020), art. No. 121633. doi: 10.1016/j.jhazmat.2019.121633
    [16]
    W.B. Lou, Y. Zhang, Y. Zhang, et al., Leaching performance of Al-bearing spent LiFePO4 cathode powder in H2SO4 aqueous solution, Trans. Nonferrous Met. Soc. China, 31(2021), No. 3, p. 817. doi: 10.1016/S1003-6326(21)65541-3
    [17]
    Y.F. Meng, H.J. Liang, C.D. Zhao, et al., Concurrent recycling chemistry for cathode/anode in spent graphite/LiFePO4 batteries: Designing a unique cation/anion-co-workable dual-ion battery, J. Energy Chem., 64(2022), p. 166. doi: 10.1016/j.jechem.2021.04.047
    [18]
    Y. Dai, Z.D. Xu, D. Hua, H.N. Gu, and N. Wang, Theoretical-molar Fe3+ recovering lithium from spent LiFePO4 batteries: An acid-free, efficient, and selective process, J. Hazard. Mater., 396(2020), art. No. 122707. doi: 10.1016/j.jhazmat.2020.122707
    [19]
    Y.F. Song, B.Y. Xie, S.L. Song, et al., Regeneration of LiFePO4 from spent lithium-ion batteries via a facile process featuring acid leaching and hydrothermal synthesis, Green Chem., 23(2021), No. 11, p. 3963. doi: 10.1039/D1GC00483B
    [20]
    T. Wang, X.S. Yu, M. Fan, et al., Direct regeneration of spent LiFePO4 via a graphite prelithiation strategy, Chem. Commun., 56(2019), No. 2, p. 245. doi: 10.1039/C9CC08155K
    [21]
    H.J. Bi, H.B. Zhu, L. Zu, Y. Gao, S. Gao, and Y.X. Bai, Environment-friendly technology for recovering cathode materials from spent lithium iron phosphate batteries, Waste Manage. Res., 38(2020), No. 8, p. 911. doi: 10.1177/0734242X20931933
    [22]
    Z. Li, L.H. He, Y.F. Zhu, and C. Yang, A green and cost-effective method for production of LiOH from spent LiFePO4, ACS Sustainable Chem. Eng., 8(2020), No. 42, p. 15915. doi: 10.1021/acssuschemeng.0c04960
    [23]
    X.L. Li, J. Zhang, D.W. Song, J.S. Song, and L.Q. Zhang, Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries, J. Power Sources, 345(2017), p. 78. doi: 10.1016/j.jpowsour.2017.01.118
    [24]
    Q. Liang, H.F. Yue, S.F. Wang, S.Y. Yang, K.H. Lam, and X.H. Hou, Recycling and crystal regeneration of commercial used LiFePO4 cathode materials, Electrochim. Acta, 330(2020), art. No. 135323. doi: 10.1016/j.electacta.2019.135323
    [25]
    Q.F. Sun, X.L. Li, H.Z. Zhang, et al., Resynthesizing LiFePO4/C materials from the recycled cathode via a green full-solid route, J. Alloys Compd., 818(2020), art. No. 153292. doi: 10.1016/j.jallcom.2019.153292
    [26]
    H. Choi, J.Y. Seo, and C.S. Kim, Effect of Mg shallow doping on structural and magnetic properties of LiFePO4 triphylite, IEEE Trans. Magn., 57(2021), No. 2, art. No. 2200305. doi: 10.1109/TMAG.2020.3014728
    [27]
    D. Goonetilleke, T. Faulkner, V.K. Peterson, and N. Sharma, Structural evidence for Mg-doped LiFePO4 electrode polarisation in commercial Li-ion batteries, J. Power Sources, 394(2018), p. 1. doi: 10.1016/j.jpowsour.2018.05.024
    [28]
    P.P. Xu, Q. Dai, H.P. Gao, et al., Efficient direct recycling of lithium-ion battery cathodes by targeted healing, Joule, 4(2020), No. 12, p. 2609. doi: 10.1016/j.joule.2020.10.008
    [29]
    P.W. Liu, Y.N. Zhang, P. Dong, et al., Direct regeneration of spent LiFePO4 cathode materials with pre-oxidation and V-doping, J. Alloys Compd., 860(2021), art. No. 157909. doi: 10.1016/j.jallcom.2020.157909
    [30]
    J. Li, Y. Wang, L.H. Wang, B. Liu, and H.M. Zhou, A facile recycling and regeneration process for spent LiFePO4 batteries, J. Mater. Sci. Mater. Electron., 30(2019), No. 15, p. 14580. doi: 10.1007/s10854-019-01830-y
    [31]
    L.H. Wang, J. Li, H.M. Zhou, et al., Regeneration cathode material mixture from spent lithium iron phosphate batteries, J. Mater. Sci. Mater. Electron., 29(2018), No. 11, p. 9283. doi: 10.1007/s10854-018-8958-7
    [32]
    Y.D. Huang, R.T. Yu, G.Q. Mao, et al., Unique FeP@C with polyhedral structure in situ coated with reduced graphene oxide as an anode material for lithium ion batteries, J. Alloys Compd., 841(2020), art. No. 155670. doi: 10.1016/j.jallcom.2020.155670
    [33]
    J.C. Zheng, Y.Y. Yao, G.Q. Mao, et al., Iron–zinc sulfide Fe2Zn3S5/Fe1–xS@C derived from a metal–organic framework as a high performance anode material for lithium-ion batteries, J. Mater. Chem. A, 7(2019), No. 27, p. 16479. doi: 10.1039/C9TA03271A
    [34]
    H. Tong, Q.J. Zhou, B. Zhang, X. Wang, and W.J. Yu, A novel core-shell structured nickel-rich layered cathode material for high-energy lithium-ion batteries, Eng. Sci., 8(2019), p. 25. doi: 10.30919/es8d502
    [35]
    J.C. Zheng, Z. Yang, Z.J. He, H. Tong, W.J. Yu, and J.F. Zhang, In situ formed LiNi0.8Co0.15Al0.05O2@Li4SiO4 composite cathode material with high rate capability and long cycling stability for lithium-ion batteries, Nano Energy, 53(2018), p. 613. doi: 10.1016/j.nanoen.2018.09.014
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(762) PDF Downloads(38) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return