Roghaye Samadianfard, Davod Seifzadeh,  and Burak Dikici, Application of g-C3N4/sol–gel nanocomposite on AM60B magnesium alloy and investigation of its properties, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1113-1127. https://doi.org/10.1007/s12613-022-2581-6
Cite this article as:
Roghaye Samadianfard, Davod Seifzadeh,  and Burak Dikici, Application of g-C3N4/sol–gel nanocomposite on AM60B magnesium alloy and investigation of its properties, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1113-1127. https://doi.org/10.1007/s12613-022-2581-6
Research Article

Application of g-C3N4/sol–gel nanocomposite on AM60B magnesium alloy and investigation of its properties

+ Author Affiliations
  • Corresponding author:

    Davod Seifzadeh    E-mail: seifzadeh@uma.ac.ir

  • Received: 16 September 2022Revised: 1 December 2022Accepted: 2 December 2022Available online: 3 December 2022
  • To protect the AM60B magnesium alloy from corrosion, a sol–gel coating containing hydroxylated g-C3N4 nanoplates was applied. The chemical composition of the hydroxylated g-C3N4 nanoplates was investigated using X-ray photoelectron spectroscopy (XPS). The hydroxylation process did not affect the crystal size, specific surface area, pore volume, average pore diameter, and thermal stability of the g-C3N4 nanoplates. After incorporating pristine and hydroxylated g-C3N4 nanoplates, dense sol–gel coatings were obtained. Transmission electron microscopy (TEM) revealed the uniform distribution of the modified g-C3N4 in the coating. The average roughness of the coating was also reduced after adding the modified nanoplates due to the decreased aggregation tendency. Electrochemical impedance spectroscopy (EIS) examinations in simulated acid rain revealed a significant improvement in the anticorrosion properties of the sol–gel film after the addition of the modified g-C3N4 due to the chemical bonding of the coating to the nanoplates.
  • loading
  • Supplementary Information-s12613-022-2581-6.docx
  • [1]
    Z. Yin, R.H. He, Y. Chen, et al., Effects of surface micro-galvanic corrosion and corrosive film on the corrosion resistance of AZ91–xNd alloys, Appl. Surf. Sci., 536(2021), art. No. 147761. doi: 10.1016/j.apsusc.2020.147761
    [2]
    X. Dai, L. Wu, Y. Xia, et al., Intercalation of Y in Mg–Al layered double hydroxide films on anodized AZ31 and Mg–Y alloys to influence corrosion protective performance, Appl. Surf. Sci., 551(2021), art. No. 149432. doi: 10.1016/j.apsusc.2021.149432
    [3]
    G.L. Yang, Y.J. Ouyang, Z.H. Xie, Y. Liu, W.X. Dai, and L. Wu, Nickel interlayer enables indirect corrosion protection of magnesium alloy by photoelectrochemical cathodic protection, Appl. Surf. Sci., 558(2021), art. No. 149840. doi: 10.1016/j.apsusc.2021.149840
    [4]
    D.D. Zhang, F. Peng, and X.Y. Liu, Protection of magnesium alloys: From physical barrier coating to smart self-healing coating, J. Alloys Compd., 853(2021), art. No. 157010. doi: 10.1016/j.jallcom.2020.157010
    [5]
    P. Predko, D. Rajnovic, M.L. Grilli, et al., Promising methods for corrosion protection of magnesium alloys in the case of Mg–Al, Mg–Mn–Ce, and Mg–Zn–Zr: A recent progress review, Metals, 11(2021), No. 7, art. No. 1133. doi: 10.3390/met11071133
    [6]
    R.G. Hu, S. Zhang, J.F. Bu, C.J. Lin, and G.L. Song, Recent progress in corrosion protection of magnesium alloys by organic coatings, Prog. Org. Coat., 73(2012), No. 2-3, p. 129. doi: 10.1016/j.porgcoat.2011.10.011
    [7]
    C. Ke, M.S. Song, R.C. Zeng, et al., Interfacial study of the formation mechanism of corrosion resistant strontium phosphate coatings upon Mg–3Al–4.3Ca–0.1Mn, Corros. Sci., 151(2019), p. 143. doi: 10.1016/j.corsci.2019.02.024
    [8]
    D. Saran, A. Kumar, S. Bathula, D. Klaumünzer, and K.K. Sahu, Review on the phosphate-based conversion coatings of magnesium and its alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1435. doi: 10.1007/s12613-022-2419-2
    [9]
    M. Kaseem, T. Zehra, B. Dikici, A. Dafali, H.W. Yang, and Y.G. Ko, Improving the electrochemical stability of AZ31 Mg alloy in a 3.5wt.% NaCl solution via the surface functionalization of plasma electrolytic oxidation coating, J. Magnes. Alloys, 10(2022), No. 5, p. 1311. doi: 10.1016/j.jma.2021.08.028
    [10]
    S.Y. Jin, X.C. Ma, R.Z. Wu, et al., Effect of carbonate additive on the microstructure and corrosion resistance of plasma electrolytic oxidation coating on Mg–9Li–3Al alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1453. doi: 10.1007/s12613-021-2377-0
    [11]
    H. Chen, J. Shen, J.Z. Deng, Y.D. Hu, and Y.H. Zhang, Sol–gel coatings with hydrothermal hydroxylation as pre-treatment for 2198-T851 corrosion protection performance, Appl. Surf. Sci., 508(2020), art. No. 145285. doi: 10.1016/j.apsusc.2020.145285
    [12]
    Y.J. Tarzanagh, D. Seifzadeh, and R. Samadianfard, Combining the 8-hydroxyquinoline intercalated layered double hydroxide film and sol–gel coating for active corrosion protection of the magnesium alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 536. doi: 10.1007/s12613-021-2251-0
    [13]
    A. Suárez-Vega, C. Agustín-Sáenz, L.A. O'dell, F. Brusciotti, A. Somers, and M. Forsyth, Properties of hybrid sol–gel coatings with the incorporation of lanthanum 4-hydroxy cinnamate as corrosion inhibitor on carbon steel with different surface finishes, Appl. Surf. Sci., 561(2021), art. No. 149881. doi: 10.1016/j.apsusc.2021.149881
    [14]
    I. Milošev, D. Hamulić, P. Rodič, et al., Siloxane polyacrylic sol–gel coatings with alkly and perfluoroalkyl chains: Synthesis, composition, thermal properties and long-term corrosion protection, Appl. Surf. Sci., 574(2022), art. No. 151578. doi: 10.1016/j.apsusc.2021.151578
    [15]
    C.A. Hernández-Barrios, C.A. Cuao, M.A. Jaimes, A.E. Coy, and F. Viejo, Effect of the catalyst concentration, the immersion time and the aging time on the morphology, composition and corrosion performance of TEOS–GPTMS sol–gel coatings deposited on the AZ31 magnesium alloy, Surf. Coat. Technol., 325(2017), p. 257. doi: 10.1016/j.surfcoat.2017.06.047
    [16]
    C.A. Hernández-Barrios, J.A. Saavedra, S.L. Higuera, A.E. Coy, and F. Viejo, Effect of cerium on the physicochemical and anticorrosive features of TEOS–GPTMS sol–gel coatings deposited on the AZ31 magnesium alloy, Surf. Interfaces, 21(2020), art. No. 100671. doi: 10.1016/j.surfin.2020.100671
    [17]
    U. Tiringer, I. Milošev, A. Durán, and Y. Castro, Hybrid sol–gel coatings based on GPTMS/TEOS containing colloidal SiO2 and cerium nitrate for increasing corrosion protection of aluminium alloy 7075-T6, J. Sol–Gel Sci. Technol., 85(2018), No. 3, p. 546. doi: 10.1007/s10971-017-4577-7
    [18]
    M. Izadi, T. Shahrabi, and B. Ramezanzadeh, Active corrosion protection performance of an epoxy coating applied on the mild steel modified with an eco-friendly sol–gel film impregnated with green corrosion inhibitor loaded nanocontainers, Appl. Surf. Sci., 440(2018), p. 491. doi: 10.1016/j.apsusc.2018.01.185
    [19]
    M.L. Zheludkevich, I.M. Salvado, and M.G.S. Ferreira, Sol–gel coatings for corrosion protection of metals, J. Mater. Chem., 15(2005), No. 48, p. 5099. doi: 10.1039/b419153f
    [20]
    P. Hammer, F.C. dos Santos, B.M. Cerrutti, S.H. Pulcinelli, and C.V. Santilli, Carbon nanotube-reinforced siloxane–PMMA hybrid coatings with high corrosion resistance, Prog. Org. Coat., 76(2013), No. 4, p. 601. doi: 10.1016/j.porgcoat.2012.11.015
    [21]
    J.D. Maeztu, P.J. Rivero, C. Berlanga, D.M. Bastidas, J.F. Palacio, and R. Rodriguez, Effect of graphene oxide and fluorinated polymeric chains incorporated in a multilayered sol–gel nanocoating for the design of corrosion resistant and hydrophobic surfaces, Appl. Surf. Sci., 419(2017), p. 138. doi: 10.1016/j.apsusc.2017.05.043
    [22]
    S. Akhtar, A. Matin, A.M. Kumar, A. Ibrahim, and T. Laoui, Enhancement of anticorrosion property of 304 stainless steel using silane coatings, Appl. Surf. Sci., 440(2018), p. 1286. doi: 10.1016/j.apsusc.2018.01.203
    [23]
    S. Pourhashem, J.Z. Duan, F. Guan, N. Wang, Y. Gao, and B.R. Hou, New effects of TiO2 nanotube/g-C3N4 hybrids on the corrosion protection performance of epoxy coatings, J. Mol. Liq., 317(2020), art. No. 114214. doi: 10.1016/j.molliq.2020.114214
    [24]
    S.F. Kang, L. Zhang, M.F. He, et al., “Alternated cooling and heating” strategy enables rapid fabrication of highly-crystalline g-C3N4 nanosheets for efficient photocatalytic water purification under visible light irradiation, Carbon, 137(2018), p. 19. doi: 10.1016/j.carbon.2018.05.010
    [25]
    S. Pourhashem, A. Rashidi, M. Alaei, M.A. Moradi, and D.M. Maklavany, Developing a new method for synthesizing amine functionalized g-C3N4 nanosheets for application as anti-corrosion nanofiller in epoxy coatings, SN Appl. Sci., 1(2018), No. 1, p. 1.
    [26]
    Y.Q. Xia, Y. He, C.L. Chen, Y.Q. Wu, F. Zhong, and J.Y. Chen, Co-modification of polydopamine and KH560 on g-C3N4 nanosheets for enhancing the corrosion protection property of waterborne epoxy coating, React. Funct. Polym., 146(2020), art. No. 104405. doi: 10.1016/j.reactfunctpolym.2019.104405
    [27]
    Y.Q. Xia, N.G. Zhang, Z.P. Zhou, et al., Incorporating SiO2 functionalized g-C3N4 sheets to enhance anticorrosion performance of waterborne epoxy, Prog. Org. Coat., 147(2020), art. No. 105768. doi: 10.1016/j.porgcoat.2020.105768
    [28]
    S.C. Yan, Z.S. Li, and Z.G. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine, Langmuir, 25(2009), No. 17, p. 10397. doi: 10.1021/la900923z
    [29]
    Y. Zheng, Z.S. Zhang, C.H. Li, and S. Proulx, Surface hydroxylation of graphitic carbon nitride: Enhanced visible light photocatalytic activity, Mater. Res. Bull., 84(2016), p. 46. doi: 10.1016/j.materresbull.2016.07.003
    [30]
    H.A. Zheng, Y. Liu, Y.H. Zhou, et al., Improved photocathodic protection performance of g-C3N4/rGO/ZnS for 304 stainless steel, J. Phys. Chem. Solids, 148(2021), art. No. 109672. doi: 10.1016/j.jpcs.2020.109672
    [31]
    Y.Y. Bu, Z.Y. Chen, J.Q. Yu, and W.B. Li, A novel application of g-C3N4 thin film in photoelectrochemical anticorrosion, Electrochim. Acta, 88(2013), p. 294. doi: 10.1016/j.electacta.2012.10.049
    [32]
    C.L. Chen, Y. He, G.Q. Xiao, F. Zhong, Y.Q. Xia, and Y.Q. Wu, Graphic C3N4-assisted dispersion of graphene to improve the corrosion resistance of waterborne epoxy coating, Prog. Org. Coat., 139(2020), art. No. 105448. doi: 10.1016/j.porgcoat.2019.105448
    [33]
    D.X. Yang, A. Velamakanni, G. Bozoklu, et al., Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy, Carbon, 47(2009), No. 1, p. 145. doi: 10.1016/j.carbon.2008.09.045
    [34]
    A. Thomas, A. Fischer, F. Goettmann, et al., Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts, J. Mater. Chem., 18(2008), No. 41, p. 4893. doi: 10.1039/b800274f
    [35]
    Q.X. Xu, G.Q. Xu, Q.B. Yu, K. Yang, and H.Q. Li, Nitrogen self-doped high specific surface area graphite carbon nitride for photocatalytic degradating of methylene blue, J. Nanoparticle Res., 21(2019), No. 11, p. 1.
    [36]
    J.H. Shi, T. Chen, C.L. Guo, et al., The bifunctional composites of AC restrain the stack of g-C3N4 with the excellent adsorption-photocatalytic performance for the removal of RhB, Colloids Surf. A, 580(2019), art. No. 123701. doi: 10.1016/j.colsurfa.2019.123701
    [37]
    R. Samadianfard, D. Seifzadeh, A. Habibi-Yangjeh, and Y. Jafari-Tarzanagh, Oxidized fullerene/sol–gel nanocomposite for corrosion protection of AM60B magnesium alloy, Surf. Coat. Technol., 385(2020), art. No. 125400. doi: 10.1016/j.surfcoat.2020.125400
    [38]
    R. Samadianfard, D. Seifzadeh, and A. Habibi-Yangjeh, Sol–gel coating filled with SDS-stabilized fullerene nanoparticles for active corrosion protection of the magnesium alloy, Surf. Coat. Technol., 419(2021), art. No. 127292. doi: 10.1016/j.surfcoat.2021.127292
    [39]
    S. Nezamdoust and D. Seifzadeh, Application of Ce–V/sol–gel composite coating for corrosion protection of AM60B magnesium alloy, Trans. Nonferrous Met. Soc. China, 27(2017), No. 2, p. 352. doi: 10.1016/S1003-6326(17)60039-6
    [40]
    N.J. Huang, Q.Q. Xia, Z.H. Zhang, et al., Simultaneous improvements in fire resistance and alarm response of GO paper via one-step 3-mercaptopropyltrimethoxysilane functionalization for efficient fire safety and prevention, Composites Part A, 131(2020), art. No. 105797. doi: 10.1016/j.compositesa.2020.105797
    [41]
    B. Ramezanzadeh, A. Ahmadi, and M. Mahdavian, Enhancement of the corrosion protection performance and cathodic delamination resistance of epoxy coating through treatment of steel substrate by a novel nanometric sol–gel based silane composite film filled with functionalized graphene oxide nanosheets, Corros. Sci., 109(2016), p. 182. doi: 10.1016/j.corsci.2016.04.004
    [42]
    M. Mao, H. Xu, K.Y. Guo, et al., Mechanically flexible, super-hydrophobic and flame-retardant hybrid nano-silica/graphene oxide wide ribbon decorated sponges for efficient oil/water separation and fire warning response, Composites Part A, 140(2021), art. No. 106191. doi: 10.1016/j.compositesa.2020.106191
    [43]
    V. Kumar and B. Kandasubramanian, Ionic-liquid-assisted three-dimensional caged silica ablative nanocomposites, J. Appl. Polym. Sci., 134(2017), No. 38, art. No. 45328. doi: 10.1002/app.45328
    [44]
    M. Yu, X.Y. Qiao, X.J. Dong, and K. Sun, Effect of particle modification on the shear thickening behaviors of the suspensions of silica nanoparticles in PEG, Colloid Polym. Sci., 296(2018), No. 11, p. 1767. doi: 10.1007/s00396-018-4399-3
    [45]
    L. Vivar Mora, A. Taylor, S. Paul, et al., Impact of silica nanoparticles on the morphology and mechanical properties of sol–gel derived coatings, Surf. Coat. Technol., 342(2018), p. 48. doi: 10.1016/j.surfcoat.2018.02.080
    [46]
    Y.H. Gao, W.L. Zhao, and Y. Chen, g-C3N4 modified by hydroxyl group on the surface prepared by double salt enhanced the visible light photocatalytic activity, Diam. Relat. Mater., 116(2021), art. No. 108425. doi: 10.1016/j.diamond.2021.108425
    [47]
    R.Y. He, B.Y. Wang, J.H. Xiang, and T.J. Pan, Effect of copper additive on microstructure and anti-corrosion performance of black MAO films grown on AZ91 alloy and coloration mechanism, J. Alloys Compd., 889(2021), art. No. 161501. doi: 10.1016/j.jallcom.2021.161501
    [48]
    Y.W. Song, D.Y. Shan, R.S. Chen, and E.H. Han, Corrosion characterization of Mg–8Li alloy in NaCl solution, Corros. Sci., 51(2009), No. 5, p. 1087. doi: 10.1016/j.corsci.2009.03.011
    [49]
    L. Sun, Y. Ma, B.F. Fan, S. Wang, and Z.Y. Wang, Investigation of anti-corrosion property of hybrid coatings fabricated by combining PEC with MAO on pure magnesium, J. Magnes. Alloys, 10(2022), No. 10, p. 2875. doi: 10.1016/j.jma.2021.04.010
    [50]
    C.Y. Zhang, S.Y. Zhang, X.P. Liu, and H.C. He, Microstructure and corrosion properties of calcium phosphate coating on magnesium alloy prepared by hydrothermal treatment at various pH values, Rare Met. Mater. Eng., 47(2018), No. 10, p. 2993. doi: 10.1016/S1875-5372(18)30223-6
    [51]
    S. Ayata and W. Ensinger, Ion beam sputter coating in combination with sol–gel dip coating of Al alloy tube inner walls for corrosion and biological protection, Surf. Coat. Technol., 340(2018), p. 121. doi: 10.1016/j.surfcoat.2018.02.065
    [52]
    S. Nezamdoust and D. Seifzadeh, Email protected]/hybrid sol–gel nanocomposite for corrosion protection of 2024 aluminum alloy, Prog. Org. Coat., 109(2017), p. 97. doi: 10.1016/j.porgcoat.2017.04.022
    [53]
    A.D. King, N. Birbilis, and J.R. Scully, Accurate electrochemical measurement of magnesium corrosion rates, a combined impedance, mass-loss and hydrogen collection study, Electrochim. Acta, 121(2014), p. 394. doi: 10.1016/j.electacta.2013.12.124
    [54]
    M.A. Ashraf, Z.L. Liu, W.X. Peng, and N. Yoysefi, Amino acid and TiO2 nanoparticles mixture inserted into sol–gel coatings: An efficient corrosion protection system for AZ91 magnesium alloy, Prog. Org. Coat., 136(2019), art. No. 105296. doi: 10.1016/j.porgcoat.2019.105296
    [55]
    J. Li, J.C. Cui, J.Y. Yang, Y. Ma, H.X. Qiu, and J.H. Yang, Silanized graphene oxide reinforced organofunctional silane composite coatings for corrosion protection, Prog. Org. Coat., 99(2016), p. 443. doi: 10.1016/j.porgcoat.2016.07.008
    [56]
    J.Y. Hu, Q. Li, X.K. Zhong, L. Zhang, and B. Chen, Composite anticorrosion coatings for AZ91D magnesium alloy with molybdate conversion coating and silicon sol–gel coatings, Prog. Org. Coat., 66(2009), No. 3, p. 199. doi: 10.1016/j.porgcoat.2009.07.003
    [57]
    H. Ashassi-Sorkhabi, S. Moradi-Alavian, and A. Kazempour, Salt-nanoparticle systems incorporated into sol–gel coatings for corrosion protection of AZ91 magnesium alloy, Prog. Org. Coat., 135(2019), p. 475. doi: 10.1016/j.porgcoat.2019.06.043
    [58]
    H. Ashassi-Sorkhabi, S. Moradi-Alavian, R. Jafari, A. Kazempour, and E. Asghari, Effect of amino acids and montmorillonite nanoparticles on improving the corrosion protection characteristics of hybrid sol–gel coating applied on AZ91 Mg alloy, Mater. Chem. Phys., 225(2019), p. 298. doi: 10.1016/j.matchemphys.2018.12.059
    [59]
    T.T. Hu, B. Xiang, S.G. Liao, and W.Z. Huang, Corrosion of AM60B magnesium alloy in simulated acid rain, Anti-Corros. Methods Mater., 57(2010), No. 5, p. 244. doi: 10.1108/00035591011075887
    [60]
    Y.J. Tarzanagh, D. Seifzadeh, Z. Rajabalizadeh, A. Habibi-Yangjeh, A. Khodayari, and S. Sohrabnezhad, Sol–gel/MOF nanocomposite for effective protection of 2024 aluminum alloy against corrosion, Surf. Coat. Technol., 380(2019), art. No. 125038. doi: 10.1016/j.surfcoat.2019.125038
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(564) PDF Downloads(104) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return