Shuai Zhu, Qiuyue Zhao, Xiaolong Li, Yan Liu, Tianci Li, and Ting’an Zhang, Flow and penetration behavior of submerged side-blown gas, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1067-1077. https://doi.org/10.1007/s12613-022-2585-2
Cite this article as:
Shuai Zhu, Qiuyue Zhao, Xiaolong Li, Yan Liu, Tianci Li, and Ting’an Zhang, Flow and penetration behavior of submerged side-blown gas, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1067-1077. https://doi.org/10.1007/s12613-022-2585-2
Research Article

Flow and penetration behavior of submerged side-blown gas

+ Author Affiliations
  • Corresponding author:

    Ting’an Zhang    E-mail: zta2000@163.net

  • Received: 20 July 2022Revised: 15 November 2022Accepted: 8 December 2022Available online: 9 December 2022
  • To assess the widely used submerged side-blowing in pyrometallurgy, a high-speed camera–digital image processing–statistical approach was used to systematically investigate the effects of the gas flow rate, nozzle diameter, and inclination angle on the space–time distribution and penetration behavior of submerged side-blown gas in an air–water system. The results show that the gas motion gradually changes from a bubbling regime to a steady jetting regime and the formation of a complete jet structure as the flow rate increases. When the flow rate is low, a bubble area is formed by large bubbles in the area above the nozzle. When the flow rate and the nozzle diameter are significant, a bubble area is formed by tiny bubbles in the area above the nozzle. The increased inclination angle requires a more significant flow rate to form a complete jet structure. In the sampling time, the dimensionless horizontal and vertical penetration depths are Gaussian distributed. Decreasing the nozzle diameter and increasing the flow rate or inclination angle will increase the distribution range and discreteness. New correlations for a penetration depth with an error of ±20% were obtained through dimensional analysis. The dimensionless horizontal penetration depth of an argon-melt system in a 120 t converter calculated by the correlation proposed by the current study is close to the result calculated by a correlation in the literature and a numerical simulation result in the literature.
  • loading
  • [1]
    H.L. Zhao, X. Zhao, L.Z. Mu, L.F. Zhang, and L.Q. Yang, Gas-liquid mass transfer and flow phenomena in a Peirce–Smith converter: A numerical model study, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1092. doi: 10.1007/s12613-019-1831-8
    [2]
    L. Zhang, L. Zhang, and Y. He, The process and application of oxygen-enriched air side blown smelting of lead–zinc materials, [in] Proc. 9th International Symposium on Lead and Zinc Processing, San Diego, 2020, p. 291.
    [3]
    H.L. Zhang, C.Q. Zhou, W. Bing, and Y.M. Chen, Numerical simulation of multiphase flow in a Vanyukov furnace, J. S. Afr. Inst. Min. Metall., 115(2015), No. 5, p. 457. doi: 10.17159/2411-9717/2015/v115n5a14
    [4]
    L. Chen, W.D. Bin, T.Z. Yang, W.F. Liu, and S. Bin, Research and industrial application of oxygen-rich side-blow bath smelting technology, [in] Proc. 4th International Symposium on High-Temperature Metallurgical Processing, San Antonio, 2013, p. 49.
    [5]
    L. Chen, W. Chen, H. Xiao, T.Z. Yang, W.F. Liu, and D.C. Zhang, Oxygen-rich side blow bath smelting technology - new developments in China, [in] Proc. 7th International Symposium on High-Temperature Metallurgical Processing, Nashville, 2016, p. 123.
    [6]
    J.H. Wei, Y. He, and G.M. Shi, Mathematical modeling of fluid flow in bath during combined side and top blowing AOD refining process of stainless steel: Mathematical model of the fluid flow, Steel Res. Int., 82(2011), No. 6, p. 703. doi: 10.1002/srin.201000278
    [7]
    K.F. Feng, J.Y. Zhang, B. Wang, et al., Numerical simulation study on immersed side-blowing in C–H2 smelting reduction furnace, [in] Proc. 5th International Symposium on High-Temperature Metallurgical Processing, San Diego, 2014, p. 451.
    [8]
    M. Iguchi, S. Kodani, and H. Tokunaga, Bubble and liquid flow characteristics during horizontal cold gas injection into a water bath, Steel Res. Int., 71(2000), No. 11, p. 435. doi: 10.1002/srin.200005712
    [9]
    X.L. Li, Y. Liu, D.X. Wang, and T.A. Zhang, Emulsification and flow characteristics in copper oxygen-rich side-blown bath smelting process, Metals, 10(2020), No. 11, art. No. 1520. doi: 10.3390/met10111520
    [10]
    R. Cheng, L.J. Zhang, Y.B. Yin, and J.M. Zhang, Effect of side blowing on fluid flow and mixing phenomenon in gas-stirred ladle, Metals, 11(2021), No. 2, art. No. 369. doi: 10.3390/met11020369
    [11]
    E.P. Heikkinen, T.M.J. Fabritius, T.M.T. Kokkonen, and J.J. Härkki, An experimental and computational study on the melting behaviour of AOD and chromium converter slags, Steel Res. Int., 75(2004), No. 12, p. 800. doi: 10.1002/srin.200405845
    [12]
    K.Z. Song and A. Jokilaakso, Transport phenomena in copper bath smelting and converting processes - A review of experimental and modeling studies, Miner. Process. Extr. Metall. Rev., 43(2022), No. 1, p. 107. doi: 10.1080/08827508.2020.1806835
    [13]
    D.K. Chibwe, G. Akdogan, G.A. Bezuidenhout, J. Kapusta, S. Bradshaw, and J.J. Eksteen, Sonic injection into a PGM Peirce-Smith converter: CFD modelling and industrial trials, J. S. Afr. Inst. Min. Metall., 115(2015), No. 5, p. 349. doi: 10.17159/2411-9717/2015/v115n5a2
    [14]
    J.P.T. Kapusta, Submerged gas jet penetration: A study of bubbling versus jetting and side versus bottom blowing in copper bath smelting, JOM, 69(2017), No. 6, p. 970. doi: 10.1007/s11837-017-2336-4
    [15]
    Y.D. Xiao, T.T. Lu, Y.G. Zhou, Q.Q. Su, L.Z. Mu, T. Wei, H.L. Zhao, and F.Q. Liu, Computational fluid dynamics study on enhanced circulation flow in a side-blown copper smelting furnace, JOM, 73(2021), No. 9, p. 2724. doi: 10.1007/s11837-021-04800-0
    [16]
    Y.T. Liu, T.Z. Yang, Z. Chen, Z.Y. Zhu, L. Zhang, and Q. Huang, Experiment and numerical simulation of two-phase flow in oxygen enriched side-blown furnace, Trans. Nonferrous Met. Soc. China, 30(2020), No. 1, p. 249. doi: 10.1016/S1003-6326(19)65196-4
    [17]
    J.L. Svantesson, M. Ersson, and P.G. Jönsson, Effect of Froude number on submerged gas blowing characteristics, Materials (Basel), 14(2021), No. 3, art. No. 627.
    [18]
    E.O. Hoefele and J.K. Brimacombe, Flow regimes in submerged gas injection, Metall. Mater. Trans. B, 10(1979), No. 4, p. 631. doi: 10.1007/BF02662566
    [19]
    K. Bölke, M. Ersson, P.Y. Ni, M. Swartling, and P.G. Jönsson, Physical modeling study on the mixing in the new IronArc process, Steel Res. Int., 89(2018), No. 7, art. No. 1700555. doi: 10.1002/srin.201700555
    [20]
    K. Bölke, M. Ersson, M. Imris, and P.G. Jönsson, Importance of the penetration depth and mixing in the IRONARC process, ISIJ Int., 58(2018), No. 7, p. 1210. doi: 10.2355/isijinternational.ISIJINT-2018-043
    [21]
    G.S. Wei, R. Zhu, T.P. Tang, K. Dong, and X.T. Wu, Study on the impact characteristics of submerged CO2 and O2 mixed injection (S-COMI) in EAF steelmaking, Metall. Mater. Trans. B, 50(2019), No. 2, p. 1077. doi: 10.1007/s11663-018-1482-6
    [22]
    J. Ma, Y.P. Song, P. Zhou, W. Cheng, and S.G. Chu, A mathematical approach to submerged horizontal buoyant jet trajectory and a criterion for jet flow patterns, Exp. Therm. Fluid Sci., 92(2018), p. 409. doi: 10.1016/j.expthermflusci.2017.11.011
    [23]
    K. Harby, S. Chiva, and J.L. Muñoz-Cobo, An experimental investigation on the characteristics of submerged horizontal gas jets in liquid ambient, Exp. Therm. Fluid Sci., 53(2014), p. 26. doi: 10.1016/j.expthermflusci.2013.10.009
    [24]
    H.H. Shi, Q. Guo, C. Wang, et al., Oscillation flow induced by underwater supersonic gas jets, Shock Waves, 20(2010), No. 4, p. 347. doi: 10.1007/s00193-010-0270-2
    [25]
    H.H. Shi, B.Y. Wang, and Z.Q. Dai, Research on the mechanics of underwater supersonic gas jets, Sci. China Phys. Mech. Astron., 53(2010), No. 3, p. 527. doi: 10.1007/s11433-010-0150-x
    [26]
    W.C. Li, Z.M. Meng, Z.N. Sun, L. Sun, and C. Wang, Investigations on the penetration length of steam–air mixture jets injected horizontally and vertically in quiescent water, Int. J. Heat Mass Transf., 122(2018), p. 89. doi: 10.1016/j.ijheatmasstransfer.2018.01.075
    [27]
    J.H. Wei, J.C. Ma, Y.Y. Fan, N.W. Yu, S.L. Yang, S.H. Xiang, and D.P. Zhu, Water modelling study of fluid flow and mixing characteristics in bath during AOD process, Ironmaking Steelmaking, 26(1999), No. 5, p. 363. doi: 10.1179/030192399677239
    [28]
    J.H. Wei, H.L. Zhu, H.B. Chi, and H.J. Wang, Physical modeling study on combined side and top blowing AOD refining process of stainless steel: Fluid mixing characteristics in bath, ISIJ Int., 50(2010), No. 1, p. 26. doi: 10.2355/isijinternational.50.26
    [29]
    J.H. Wei, H.L. Zhu, H.B. Chi, and H.J. Wang, Physical modeling study on combined side and top blowing AOD refining process of stainless steel: Gas stirring and fluid flow characteristics in bath, ISIJ Int., 50(2010), No. 1, p. 17. doi: 10.2355/isijinternational.50.17
    [30]
    T. Fabritius, P. Kupari, and J. Härkki, Physical modelling of a sidewall-blowing converter, Scand. J. Metall., 30(2001), No. 2, p. 57. doi: 10.1034/j.1600-0692.2001.300201.x
    [31]
    T.M.J. Fabritius, P.T. Mure, and J.J. Härkki, The determination of the minimum and operational gas flow rates for sidewall blowing in the AOD-converter, ISIJ Int., 43(2003), No. 8, p. 1177. doi: 10.2355/isijinternational.43.1177
    [32]
    M. Bjurström, A. Tilliander, M. Iguchi, and P. Jönsson, Physical-modeling study of fluid flow and gas penetration in a side-blown AOD converter, ISIJ Int., 46(2006), No. 4, p. 523. doi: 10.2355/isijinternational.46.523
    [33]
    H.J. Odenthal, U. Thiedemann, U. Falkenreck, and J. Schlueter, Simulation of fluid flow and oscillation of the argon oxygen decarburization (AOD) process, Metall. Mater. Trans. B, 41(2010), No. 2, p. 396. doi: 10.1007/s11663-009-9335-y
    [34]
    T. Hass, V.V. Visuri, A. Kärnä, E. Isohookana, P. Sulasalmi, R.H. Eriç, H. Pfeifer, and T. Fabritius, Physical modelling of the effect of slag and top-blowing on mixing in the AOD process, [in] Proc. 10th International Conference on Molten Slags, Fluxes and Salts, Seattle, 2016, p. 999.
    [35]
    P. Ternstedt, P.Y. Ni, N. Lundqvist, A. Tilliander, and P.G. Jönsson, A physical modelling study to determine the influence of slag on the fluid flow in the AOD converter process, Ironmaking Steelmaking, 45(2018), No. 10, p. 944. doi: 10.1080/03019233.2017.1415012
    [36]
    S. Chanouian, B. Ahlin, A. Tilliander, and M. Ersson, Inclination effect on mixing time in a gas–stirred side–blown converter, Steel Res. Int., 92(2021), No. 10, art. No. 2100044. doi: 10.1002/srin.202100044
    [37]
    Y.G. Xu, M. Ersson, and P.G. Jönsson, Numerical investigations on bubble behavior at a steel–slag interface, Steel Res. Int., 91(2020), No. 6, art. No. 1900611. doi: 10.1002/srin.201900611
    [38]
    P. Dong, B.J. Lu, S.F. Gong, and D. Cheng, Experimental study of submerged gas jets in liquid cross flow, Exp. Therm. Fluid Sci., 112(2020), art. No. 109998. doi: 10.1016/j.expthermflusci.2019.109998
    [39]
    C.J. Su, J.M. Chou, and S.H. Liu, Effect of gas bottom blowing conditions on fluid flow phenomena and mixing time of molten iron inside an ironmaking smelter, Mater. Trans., 51(2010), No. 9, p. 1602. doi: 10.2320/matertrans.M2010104
    [40]
    A.N. Conejo, Fundamentals of Dimensional Analysis: Theory and Applications in Metallurgy, Springer Singapore, Singapore, 2021, p. 305.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(386) PDF Downloads(50) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return