Cite this article as: |
Chao Gu, Ziyu Lyu, Qin Hu, and Yanping Bao, Investigation of the structural, electronic and mechanical properties of CaO–SiO2 compound particles in steel based on density functional theory, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 744-755. https://doi.org/10.1007/s12613-022-2588-z |
Chao Gu E-mail: guchao@ustb.edu.cn
Yanping Bao E-mail: baoyp@ustb.edu.cn
[1] |
L. Wang, B. Song, Z.B. Yang, et al., Effects of Mg and La on the evolution of inclusions and microstructure in Ca–Ti treated steel, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1940. doi: 10.1007/s12613-021-2285-3
|
[2] |
H. Feng, P.C. Lu, H.B. Li, and Z.H. Jiang, Effect of Mg pretreatment and Ce addition on cleanliness and inclusion evolution in high-nitrogen stainless bearing steels, Metall. Mater. Trans. B, 53(2022), No. 2, p. 864. doi: 10.1007/s11663-021-02409-x
|
[3] |
J.J. Wang, L.F. Zhang, G. Cheng, Q. Ren, and Y. Ren, Dynamic mass variation and multiphase interaction among steel, slag, lining refractory and nonmetallic inclusions: Laboratory experiments and mathematical prediction, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1298. doi: 10.1007/s12613-021-2304-4
|
[4] |
Q. Zhao, X.H. Mei, L. Gao, et al., Fundamental research on fluorine-free ladle furnace slag for axle steel of electric multiple unit vehicles, Metals, 11(2021), No. 12, art. No. 1973. doi: 10.3390/met11121973
|
[5] |
C.S. Liu, Y. Kacar, B. Webler, and P.C. Pistorius, Chemical composition modification of inclusions in steels by controlled Ca treatment, Metall. Mater. Trans. B, 52(2021), No. 5, p. 2837. doi: 10.1007/s11663-021-02287-3
|
[6] |
W. Liu, S.F. Yang, J.S. Li, F. Wang, and H.B. Yang, Numerical model of inclusion separation from liquid metal with consideration of dissolution in slag, J. Iron Steel Res. Int., 26(2019), No. 11, p. 1147. doi: 10.1007/s42243-018-0212-2
|
[7] |
W.S. Wang, H.Y. Zhu, M.M. Song, J.L. Li, and Z.L. Xue, Effect of ferromanganese additions on non-metallic inclusion characteristics in TRIP steel, J. Iron Steel Res. Int., 29(2022), No. 9, p. 1464. doi: 10.1007/s42243-022-00768-6
|
[8] |
M. Ashizuka, Y. Aimoto, and T. Okuno, Mechanical properties of sintered silicate crystals (Part 1), J. Ceram. Soc. Jpn, 97(1989), No. 1125, p. 544. doi: 10.2109/jcersj.97.544
|
[9] |
Q.X. Jiang, V.M. Bertolo, V.A. Popovich, J. Sietsma, and C.L. Walters, Relating matrix stress to local stress on a hard microstructural inclusion for understanding cleavage fracture in high strength steel, Int. J. Fract., 232(2021), No. 1, p. 1. doi: 10.1007/s10704-021-00587-y
|
[10] |
W. Xiao, Y.P. Bao, C. Gu, et al., Ultrahigh cycle fatigue fracture mechanism of high-quality bearing steel obtained through different deoxidation methods, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 804. doi: 10.1007/s12613-021-2253-y
|
[11] |
D. Spriestersbach, P. Grad, and E. Kerscher, Influence of different non-metallic inclusion types on the crack initiation in high-strength steels in the VHCF regime, Int. J. Fatigue, 64(2014), p. 114. doi: 10.1016/j.ijfatigue.2014.03.003
|
[12] |
S.A. Ayoub and J.B. Lagowski, Optimizing the performance of the bulk heterojunction organic solar cells based on DFT simulations of their interfacial properties, Mater. Des., 156(2018), p. 558. doi: 10.1016/j.matdes.2018.07.016
|
[13] |
X.G. Gong, W.W. Xu, C. Cui, et al., Exploring alloying effect on phase stability and mechanical properties of γ″-Ni3Nb precipitates with first-principles calculations, Mater. Des., 196(2020), art. No. 109174. doi: 10.1016/j.matdes.2020.109174
|
[14] |
J. Hui, X.Y. Zhang, T. Liu, W.G. Liu, and B. Wang, First-principles calculation of twin boundary energy and strength/embrittlement in hexagonal close-packed titanium, Mater. Des., 213(2022), art. No. 110331. doi: 10.1016/j.matdes.2021.110331
|
[15] |
B. Zhang, J.S. Xiao, S.Q. Jiao, and H.M. Zhu, Thermodynamic and thermoelectric properties of titanium oxycarbide with metal vacancy, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 787. doi: 10.1007/s12613-022-2421-8
|
[16] |
M.I. Khan, H. Arshad, M. Rizwan, et al., Investigation of structural, electronic, magnetic and mechanical properties of a new series of equiatomic quaternary Heusler alloys CoYCrZ (Z = Si, Ge, Ga, Al): A DFT study, J. Alloys Compd., 819(2020), art. No. 152964. doi: 10.1016/j.jallcom.2019.152964
|
[17] |
A.J. Cinthia, G.S. Priyanga, R. Rajeswarapalanichamy, and K. Iyakutti, Structural, electronic and mechanical properties of alkaline earth metal oxides MO (M = Be, Mg, Ca, Sr, Ba), J. Phys. Chem. Solids, 79(2015), p. 23. doi: 10.1016/j.jpcs.2014.10.021
|
[18] |
S.A. Dar, V. Srivastava, U.K. Sakalle, and G. Pagare, Insight into structural, electronic, magnetic, mechanical, and thermodynamic properties of actinide perovskite BaPuO3, J. Supercond. Nov. Magn., 31(2018), No. 10, p. 3201. doi: 10.1007/s10948-018-4574-2
|
[19] |
X.J. Liu, J.C. Yang, F. Zhang, X.Y. Fu, H.W. Li, and C.Q. Yang, Experimental and DFT study on cerium inclusions in clean steels, J. Rare Earths, 39(2021), No. 4, p. 477. doi: 10.1016/j.jre.2020.07.021
|
[20] |
S.J. Edrees, M.M. Shukur, and M.M. Obeid, First-principle analysis of the structural, mechanical, optical and electronic properties of wollastonite monoclinic polymorph, Comput. Condens. Matter, 14(2018), p. 20. doi: 10.1016/j.cocom.2017.12.004
|
[21] |
P. Rejmak, J.S. Dolado, M.A.G. Aranda, and A. Ayuela, First-principles calculations on polymorphs of dicalcium silicate–Belite, a main component of Portland cement, J. Phys. Chem. C, 123(2019), No. 11, p. 6768. doi: 10.1021/acs.jpcc.8b10045
|
[22] |
C.W. Bale, P. Chartrand, S.A. Degterov, et al., FactSage thermochemical software and databases, Calphad, 26(2002), No. 2, p. 189. doi: 10.1016/S0364-5916(02)00035-4
|
[23] |
C. Remy, D. Andrault, and M. Madon, High-temperature, high-pressure X-ray investigation of dicalcium silicate, J. Am. Ceram. Soc., 80(1997), No. 4, p. 851.
|
[24] |
K. Sasaki, H. Ishida, Y. Okada, and T. Mitsuda, Highly reactive β-dicalcium silicate: V, influence of specific surface area on hydration, J. Am. Ceram. Soc., 76(1993), No. 4, p. 870. doi: 10.1111/j.1151-2916.1993.tb05308.x
|
[25] |
H. Toraya and S. Yamazaki, Simulated annealing structure solution of a new phase of dicalcium silicate Ca2SiO4 and the mechanism of structural changes from α-dicalcium silicate hydrate to
|
[26] |
W.M. Kriven, Possible alternative transformation tougheners to zirconia: Crystallographic aspects, J. Am. Ceram. Soc., 71(1988), No. 12, p. 1021. doi: 10.1111/j.1151-2916.1988.tb05786.x
|
[27] |
Y.V. Seryotkin, E.V. Sokol, and S.N. Kokh, Natural pseudowollastonite: Crystal structure, associated minerals, and geological context, Lithos, 134-135(2012), p. 75. doi: 10.1016/j.lithos.2011.12.010
|
[28] |
T. Gasparik, K. Wolf, and C.M. Smith, Experimental determination of phase relations in the CaSiO3 system from 8 to 15 GPa, Am. Mineral., 79(1994), p. 1219.
|
[29] |
S. Milani, D. Comboni, P. Lotti, et al., Crystal structure evolution of CaSiO3 polymorphs at earth’s mantle pressures, Minerals, 11(2021), No. 6, art. No. 652. doi: 10.3390/min11060652
|
[30] |
A.E. Zadov, V.M. Gazeev, N.N. Pertsev, et al., Discovery and investigation of a natural analog of calcio-olivine (γ-Ca2SiO4), Dokl. Earth Sci., 423(2008), No. 2, p. 1431. doi: 10.1134/S1028334X08090237
|
[31] |
M.D. Segall, P.J.D. Lindan, M.J. Probert, et al., First-principles simulation: Ideas, illustrations and the CASTEP code, J. Phys. Condens. Matter, 14(2002), No. 11, p. 2717. doi: 10.1088/0953-8984/14/11/301
|
[32] |
J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865. doi: 10.1103/PhysRevLett.77.3865
|
[33] |
C.C. Qi, D. Spagnoli, and A. Fourie, Structural, electronic, and mechanical properties of calcium aluminate cements: Insight from first-principles theory, Constr. Build. Mater., 264(2020), art. No. 120259. doi: 10.1016/j.conbuildmat.2020.120259
|
[34] |
Y.Y. Zhang, X. Liu, Z.H. Xiong, and Z.G. Zhang, Compressional behavior of MgCr2O4 spinel from first-principles simulation, Sci. China Earth Sci., 59(2016), No. 5, p. 989. doi: 10.1007/s11430-016-5269-9
|
[35] |
S.K. Saravana Karthikeyan, P. Santhoshkumar, Y.C. Joe, et al., Understanding of the elastic constants, energetics, and bonding in dicalcium silicate using first-principles calculations, J. Phys. Chem. C, 122(2018), No. 42, p. 24235. doi: 10.1021/acs.jpcc.8b06630
|
[36] |
W. Eysel and T. Hahn, Polymorphism and solid solution of Ca2GeO4 and Ca2SiO4, Z. Krist. Cryst. Mater., 131(1970), No. 1-6, p. 322. doi: 10.1524/zkri.1970.131.16.322
|
[37] |
M.Y. Chen, Z.G. Xia, M.S. Molokeev, and Q.L. Liu, Structural phase transformation and luminescent properties of Ca(2–x)SrxSiO4: Ce3+ orthosilicate phosphors, Inorg. Chem., 54(2015), No. 23, p. 11369. doi: 10.1021/acs.inorgchem.5b01955
|
[38] |
A.M. Ll'Inets, Y.A. Malinovskii, and N.N. Nevskii, Crystal structure of the rhombohedral modification of tricalcium silicate Ca3SiO5, Sov. Phys. Dokl., 20(1985), p. 191.
|
[39] |
I. Kusachi, C. Henmi, A. Kawahara, and K. Henmi, The structure of rankinite, Mineral. J., 8(1975), No. 1, p. 38. doi: 10.2465/minerj.8.38
|
[40] |
H. Manzano, J.S. Dolado, and A. Ayuela, Structural, mechanical, and reactivity properties of tricalcium aluminate using first-principles calculations, J. Am. Ceram. Soc., 92(2009), No. 4, p. 897. doi: 10.1111/j.1551-2916.2009.02963.x
|
[41] |
X. Gao, W.T. Zhang, X.M. Wang, X. Huang, and Z. Zhao, Charge compensation effects of alkali metal ions M+ (Li+, Na+, K+) on luminescence enhancement in red-emitting Ca3Si2O7: Eu3+ phosphors, J. Alloys Compd., 893(2022), art. No. 162265. doi: 10.1016/j.jallcom.2021.162265
|
[42] |
I. Razumovskii, B. Bokstein, A. Logacheva, I. Logachev, and M. Razumovsky, Cohesive strength and structural stability of the Ni-based superalloys, Materials, 15(2021), No. 1, art. No. 200. doi: 10.3390/ma15010200
|
[43] |
Y. Kitagawa, J. Ueda, K. Fujii, et al., Site-selective Eu3+ luminescence in the monoclinic phase of YSiO2N, Chem. Mater., 33(2021), No. 22, p. 8873. doi: 10.1021/acs.chemmater.1c03139
|
[44] |
I. Petousis, D. Mrdjenovich, E. Ballouz, et al., High-throughput screening of inorganic compounds for the discovery of novel dielectric and optical materials, Sci. Data, 4(2017), art. No. 160134. doi: 10.1038/sdata.2016.134
|
[45] |
Y. Tao, Y.D. Mu, W.Q. Zhang, and F.Z. Wang, Screening out reactivity-promoting candidates for γ-Ca2SiO4 carbonation by first-principles calculations, Front. Mater., 7(2020), art. No. 299. doi: 10.3389/fmats.2020.00299
|
[46] |
F. Mouhat and F.X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B, 90(2014), No. 22, art. No. 224104. doi: 10.1103/PhysRevB.90.224104
|
[47] |
S. Chandrasekar and S. Santhanam, A calculation of the bulk modulus of polycrystalline materials, J. Mater. Sci., 24(1989), No. 12, p. 4265. doi: 10.1007/BF00544497
|
[48] |
Z.M. Sun, S. Li, R. Ahuja, and J.M. Schneider, Calculated elastic properties of M2AlC (M = Ti, V, Cr, Nb, and Ta), Solid State Commun., 129(2004), No. 9, p. 589. doi: 10.1016/j.ssc.2003.12.008
|
[49] |
N.I. Demidenko and A.P. Stetsovskii, Correlation between elastic properties of wollastonite-based materials and sintering temperature, Glass Ceram., 60(2003), No. 7, p. 217.
|
[50] |
K. Velez, S. Maximilien, D. Damidot, G. Fantozzi, and F. Sorrentino, Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker, Cem. Concr. Res., 31(2001), No. 4, p. 555. doi: 10.1016/S0008-8846(00)00505-6
|
[51] |
S. Abraham, R. Bodnar, J. Raines, and Y.F. Wang, Inclusion engineering and metallurgy of calcium treatment, J. Iron Steel Res. Int., 25(2018), No. 2, p. 133. doi: 10.1007/s42243-018-0017-3
|
[52] |
L. Holappa and O. Wijk, Inclusion engineering, [in] S. Seetharaman, ed., Treatise on Process Metallurgy, Elsevier, Amsterdam, 2014, p. 347.
|
[53] |
A. Costa e Silva, Thermodynamic aspects of inclusion engineering in steels, Rare Met., 25(2006), No. 5, p. 412. doi: 10.1016/S1001-0521(06)60077-6
|
[54] |
U. Karr, Y. Sandaiji, R. Tanegashima, et al., Inclusion initiated fracture in spring steel under axial and torsion very high cycle fatigue loading at different load ratios, Int. J. Fatigue, 134(2020), art. No. 105525. doi: 10.1016/j.ijfatigue.2020.105525
|
[55] |
D.P. Fairchild, D.G. Howden, and W.T. Clark, The mechanism of brittle fracture in a microalloyed steel: Part I. Inclusion-induced cleavage, Metall. Mater. Trans. A, 31(2000), No. 3, p. 641. doi: 10.1007/s11661-000-0007-4
|
[56] |
C. Gu, W.Q. Liu, J.H. Lian, and Y.P. Bao, In-depth analysis of the fatigue mechanism induced by inclusions for high-strength bearing steels, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 826. doi: 10.1007/s12613-020-2223-9
|
[57] |
C. Przybyla, R. Prasannavenkatesan, N. Salajegheh, and D.L. McDowell, Microstructure-sensitive modeling of high cycle fatigue, Int. J. Fatigue, 32(2010), No. 3, p. 512. doi: 10.1016/j.ijfatigue.2009.03.021
|
[58] |
C. Gu, J.H. Lian, Y.P. Bao, and S. Münstermann, Microstructure-based fatigue modelling with residual stresses: Prediction of the microcrack initiation around inclusions, Mater. Sci. Eng. A, 751(2019), p. 133. doi: 10.1016/j.msea.2019.02.058
|
[59] |
C. Gu, J.H. Lian, Y.P. Bao, Q.G. Xie, and S. Münstermann, Microstructure-based fatigue modelling with residual stresses: Prediction of the fatigue life for various inclusion sizes, Int. J. Fatigue, 129(2019), art. No. 105158. doi: 10.1016/j.ijfatigue.2019.06.018
|