Dan Zhang, Chunyan Zhang, Xuan Zheng, Yizhuo Zhao, Xinyu Shi, Baomin Luo, Yuzhu Li, Guangyin Liu, Xiaodi Liu, and Chuang Yu, Facile synthesis of the Mn3O4 polyhedron grown on N-doped honeycomb carbon as high-performance negative material for lithium-ion batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1152-1161. https://doi.org/10.1007/s12613-022-2590-5
Cite this article as:
Dan Zhang, Chunyan Zhang, Xuan Zheng, Yizhuo Zhao, Xinyu Shi, Baomin Luo, Yuzhu Li, Guangyin Liu, Xiaodi Liu, and Chuang Yu, Facile synthesis of the Mn3O4 polyhedron grown on N-doped honeycomb carbon as high-performance negative material for lithium-ion batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1152-1161. https://doi.org/10.1007/s12613-022-2590-5
Research Article

Facile synthesis of the Mn3O4 polyhedron grown on N-doped honeycomb carbon as high-performance negative material for lithium-ion batteries

+ Author Affiliations
  • Corresponding authors:

    Dan Zhang    E-mail: danzhangny@163.com

    Chuang Yu    E-mail: cyu2020@hust.edu.cn

  • Received: 26 October 2022Revised: 7 December 2022Accepted: 22 December 2022Available online: 23 December 2022
  • Because of their large volume variation and inferior electrical conductivity, Mn3O4-based oxide anode materials have short cyclic lives and poor rate capability, which obstructs their development. In this study, we successfully prepared a Mn3O4/N-doped honeycomb carbon composite using a smart and facile synthetic method. The Mn3O4 nanopolyhedra are grown on N-doped honeycomb carbon, which evidently mitigates the volume change in the charging and discharging processes but also improves the electrochemical reaction kinetics. More importantly, the Mn–O–C bond in the Mn3O4/N-doped honeycomb carbon composite benefits electrochemical reversibility. These features of the Mn3O4/N-doped honeycomb carbon (NHC) composite are responsible for its superior electrochemical performance. When used for Li-ion batteries, the Mn3O4/N-doped honeycomb carbon anode exhibits a high reversible capacity of 598 mAh·g−1 after 350 cycles at 1 A·g−1. Even at 2 A·g−1, the Mn3O4/NHC anode still delivers a high capacity of 472 mAh·g−1. This work provides a new prospect for synthesizing and developing manganese-based oxide materials for energy storage.
  • loading
  • Supplementary Information-s12613-022-2590-5.docx
  • [1]
    Y.J. Qiao, H. Zhang, Y.X. Hu, et al., A chain-like compound of Si@CNT nanostructures and MOF-derived porous carbon as an anode for Li-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1611. doi: 10.1007/s12613-021-2266-6
    [2]
    R.M. Tao, T.Y. Zhang, S.S. Tan, et al., Insight into the fast-rechargeability of a novel Mo1.5W1.5Nb14O44 anode material for high-performance lithium-ion batteries, Adv. Energy Mater., 12(2022), No. 36, art. No. 2200519. doi: 10.1002/aenm.202200519
    [3]
    W.X. Wang, F.Y. Xiong, S.H. Zhu, J.H. Chen, J. Xie, and Q.Y. An, Defect engineering in molybdenum-based electrode materials for energy storage, eScience, 2(2022), No. 3, p. 278. doi: 10.1016/j.esci.2022.04.005
    [4]
    X. Guo, Z.J. Sun, H. Ge, et al., MnOx bound on oxidized multi-walled carbon nanotubes as anode for lithium-ion batteries, Chem. Eng. J., 426(2021), art. No. 131335. doi: 10.1016/j.cej.2021.131335
    [5]
    Z.G. Cao, Y.B. Yang, J.J. Qin, and Z.X. Su, A core–shell porous MnO2/carbon nanosphere composite as the anode of lithium-ion batteries, J. Power Sources, 491(2021), art. No. 229577. doi: 10.1016/j.jpowsour.2021.229577
    [6]
    X. Li, W.C. Yue, W.B. Li, et al., Rational design of 3D net-like carbon based Mn3O4 anode materials with enhanced lithium storage performance, New J. Chem., 46(2022), No. 27, p. 13220. doi: 10.1039/D2NJ01618D
    [7]
    Y.F. Deng, L.N. Wan, Y. Xie, X.S. Qin, and G.H. Chen, Recent advances in Mn-based oxides as anode materials for lithium ion batteries, RSC Adv., 4(2014), No. 45, p. 23914. doi: 10.1039/C4RA02686A
    [8]
    W. Yao, W.J. Qiu, Z.X. Xu, J.G. Xu. J.H. Luo, and Y.C. Wen, Two-dimensional sulfur-doped Mn3O4 quantum dots/reduced graphene oxide nanosheets as high-rate anode materials for lithium storage, Ceram. Int., 44(2018), No. 17, p. 21734. doi: 10.1016/j.ceramint.2018.08.267
    [9]
    B.B. Kopuklu, A. Tasdemir, S.A. Gursel, and A. Yurum, High stability graphene oxide aerogel supported ultrafine Fe3O4 particles with superior performance as a Li-ion battery anode, Carbon, 174(2021), p. 158. doi: 10.1016/j.carbon.2020.12.049
    [10]
    L. Hou, B.L. Xing, H.H. Zeng, et al., Aluminothermic reduction synthesis of Si/C composite nanosheets from waste vermiculite as high-performance anode materials for lithium-ion batteries, J. Alloys Compd., 922(2022), art. No. 166134. doi: 10.1016/j.jallcom.2022.166134
    [11]
    A.M. Huang, Y.C. Ma, J. Peng, et al., Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology, eScience, 1(2021), No. 2, p. 141. doi: 10.1016/j.esci.2021.11.006
    [12]
    C.Y. Zhang, Y.Z. Li, X.X. Liu, X. Zheng, Y.Z. Zhao, and D. Zhang, Facile synthesis of Fe24N10/porous carbon as a novel high-performance anode material for lithium-ion batteries, Mater. Lett., 300(2021), art. No. 130196. doi: 10.1016/j.matlet.2021.130196
    [13]
    N.N. Yao, Y. Zhang, X.H. Rao, et al., A review on the critical challenges and progress of SiOx-based anodes for lithium-ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 876. doi: 10.1007/s12613-022-2422-7
    [14]
    D. Zhang, C.Y. Zhang, Y.Z. Zhao, et al., Facilely fabricating V2O3@C nanosheets grown on rGO as high-performance negative materials for lithium-ion batteries by adjusting surface tension, Ind. Eng. Chem. Res., 61(2022), No. 34, p. 12600. doi: 10.1021/acs.iecr.2c02032
    [15]
    X.G. Han, L.M. Sun, F. Wang, and D. Sun, MOF-derived honeycomb-like N-doped carbon structures assembled from mesoporous nanosheets with superior performance in lithium-ion batteries, J. Mater. Chem. A, 6(2018), No. 39, p. 18891. doi: 10.1039/C8TA07682K
    [16]
    R. Huang, Y.F. Li, W.B. Liu, Y.H. Song, and L. Wang, N-doped honeycomb-like carbon networks loaded with ultra-fine Fe2O3 nanoparticles for lithium-ion batteries, Ceram. Int., 46(2020), No. 11, p. 17478. doi: 10.1016/j.ceramint.2020.04.043
    [17]
    H. Liu, M.M. Yang, Z. Yi, T. Duan, and W.T. Yao, Bi2O3/Bi nanocomposites confined by N-doped honeycomb-like porous carbon for high-rate and long-life lithium storage, Appl. Mater. Today, 22(2021), art. No. 100885. doi: 10.1016/j.apmt.2020.100885
    [18]
    L.C. Wang, L. Li, H.Y. Wang, J.B. Yang, F. Wu, and R.J. Chen, Stable conversion Mn3O4 Li-ion battery anode material with integrated hierarchical and core–shell structure, ACS Appl. Energy Mater., 2(2019), No. 7, p. 5206. doi: 10.1021/acsaem.9b00839
    [19]
    K.Z. Cao, Y.H. Jia, S.D. Wang, K.J. Huang, and H.Q. Liu, Mn3O4 nanoparticles anchored on carbon nanotubes as anode material with enhanced lithium storage, J. Alloys Compd., 854(2021), art. No. 157179. doi: 10.1016/j.jallcom.2020.157179
    [20]
    D. Zhang, G.S. Li, J.M. Fan, B.Y. Li, and L.P. Li, In situ synthesis of Mn3O4 nanoparticles on hollow carbon nanofiber as high-performance lithium-ion battery anode, Chem. Eur. J., 24(2018), No. 38, p. 9632. doi: 10.1002/chem.201801196
    [21]
    P.C. Nagajyothi, R. Ramaraghavulu, K. Munirathnam, K. Yoo, and J. Shim, One-pot hydrothermal synthesis: Enhanced MOR and OER performance using low-cost Mn3O4 electrocatalyst, Int. J. Hydrogen Energy, 46(2021), No. 27, p. 13946. doi: 10.1016/j.ijhydene.2020.11.147
    [22]
    A.G. Abd-Elrahim and D.M. Chun, Heterostructured Mn3O4-2D material nanosheets: One-step vacuum kinetic spray deposition and non-enzymatic H2O2 sensing, Ceram. Int., 47(2021), No. 24, p. 35111. doi: 10.1016/j.ceramint.2021.09.054
    [23]
    Q. Wang, Y.Y. Du, Y.Q. Lai, F.Y. Liu, L.X. Jiang, and M. Jia, Three-dimensional antimony sulfide anode with carbon nanotube interphase modified for lithium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1629. doi: 10.1007/s12613-021-2249-7
    [24]
    D. Zhang, G.S. Li, M.J. Yu, J.M. Fan, B.Y. Li, and L.P. Li, Facile synthesis of Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet as high-performance anode for lithium-ion batteries, J. Power Sources, 384(2018), p. 34. doi: 10.1016/j.jpowsour.2018.02.071
    [25]
    X.Y. Xie, L. Shang, X.Y. Xiong, R. Shi, and T.R. Zhang, Fe single-atom catalysts on MOF-5 derived carbon for efficient oxygen reduction reaction in proton exchange membrane fuel cells, Adv. Energy Mater., 12(2022), No. 3, art. No. 2102688. doi: 10.1002/aenm.202102688
    [26]
    K.A. Alzahrani, R.M. Mohamed, and A.A. Ismail, Enhanced visible light response of heterostructured Cr2O3 incorporated two-dimensional mesoporous TiO2 framework for H2 evolution, Ceram. Int., 47(2021), No. 15, p. 21293. doi: 10.1016/j.ceramint.2021.04.136
    [27]
    M.P. Araújo, M. Nunes, I.M. Rocha, M.F.R. Pereira, and C. Freire, Electrocatalytic activity of new Mn3O4@oxidized graphene flakes nanocomposites toward oxygen reduction reaction, J. Mater. Sci., 54(2019), No. 12, p. 8919. doi: 10.1007/s10853-019-03508-6
    [28]
    W.F. Mao, W. Yue, Z.J. Xu, et al., Novel Hoberman sphere design for interlaced Mn3O4@CNT architecture with atomic layer deposition-coated TiO2 overlayer as advanced anodes in Li-ion battery, ACS Appl. Mater. Interfaces, 12(2020), No. 35, p. 39282. doi: 10.1021/acsami.0c11282
    [29]
    B.F. Sun, Y.N. Yuan, H.L. Li, et al., Waste-cellulose-derived porous carbon adsorbents for methyl orange removal, Chem. Eng. J., 371(2019), p. 55. doi: 10.1016/j.cej.2019.04.031
    [30]
    R.M. Yadav, Z.Y. Li, T.Y. Zhang, et al., Amine-functionalized carbon nanodot electrocatalysts converting carbon dioxide to methane, Adv. Mater., 34(2022), No. 2, art. No. 2105690. doi: 10.1002/adma.202105690
    [31]
    B.K. Liu, S.H. Zhan, J. Du, et al., Revealing the mechanism of sp-N doping in graphdiyne for developing site-defined metal-free catalysts, Adv. Mater., 2022, art. No. 2206450. https://doi.org/10.1002/adma.202206450
    [32]
    S. Ibraheem, S.G. Chen, J. Li, et al., Three-dimensional Fe,N-decorated carbon-supported NiFeP nanoparticles as an efficient bifunctional catalyst for rechargeable zinc–O2 batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 1, p. 699. doi: 10.1021/acsami.8b16126
    [33]
    S. Li, L.L. Yu, Y.T. Shi, et al., Greatly enhanced Faradic capacities of 3D porous Mn3O4/G composites as lithium-ion anodes and supercapacitors by C–O–Mn bonding, ACS Appl. Mater. Interfaces, 11(2019), No. 10, p. 10178. doi: 10.1021/acsami.8b21063
    [34]
    H.N. Jia, J.H. Lin, Y.L. Liu, et al., Nanosized core–shell structured graphene–MnO2 nanosheet arrays as stable electrodes for superior supercapacitors, J. Mater. Chem. A, 5(2017), No. 21, p. 10678. doi: 10.1039/C7TA02627G
    [35]
    Y.N. Wang, N.Q. Fu, P. Ma, et al., Facile synthesis of NiCo2O4/carbon black composite as counter electrode for dye-sensitized solar cells, Appl. Surf. Sci., 419(2017), p. 670. doi: 10.1016/j.apsusc.2017.05.057
    [36]
    L.Y. Cao, R.Y. Wang, Z.W. Xu, et al., Constructing Mn–O–C bonds in Mn3O4/super P composite for superior performance in Li-ion battery, J. Electroanal. Chem., 798(2017), p. 1. doi: 10.1016/j.jelechem.2017.05.032
    [37]
    Q. Hao, B.B. Liu, J.J. Ye, and C.X. Xu, Well encapsulated Mn3O4 octahedra in graphene nanosheets with much enhanced Li-storage performances, J. Colloid Interface Sci., 504(2017), p. 603. doi: 10.1016/j.jcis.2017.05.079
    [38]
    R. Lin, W.B. Yue, F.Z. Niu, and J. Ma, Novel strategy for the preparation of graphene-encapsulated mesoporous metal oxides with enhanced lithium storage, Electrochim. Acta, 205(2016), p. 85. doi: 10.1016/j.electacta.2016.04.095
    [39]
    M.J. Jing, H.S. Hou, Y.C. Yang, et al., Electrochemically alternating voltage induced Mn3O4/graphite powder composite with enhanced electrochemical performances for lithium-ion batteries, Electrochim. Acta, 155(2015), p. 157. doi: 10.1016/j.electacta.2014.12.170
    [40]
    M.J. Jing, J.F. Wang, H.S. Hou, et al., Carbon quantum dot coated Mn3O4 with enhanced performances for lithium-ion batteries, J. Mater. Chem. A, 3(2015), No. 32, p. 16824. doi: 10.1039/C5TA03610K
    [41]
    S.J.P. Varapragasam, C. Balasanthiran, A. Gurung, Q.Q. Qiao, R.M. Rioux, and J.D. Hoefelmeyer, Kirkendall growth of hollow Mn3O4 nanoparticles upon galvanic reaction of MnO with Cu2+ and evaluation as anode for lithium-ion batteries, J. Phys. Chem. C, 121(2017), No. 21, p. 11089. doi: 10.1021/acs.jpcc.7b01540
    [42]
    Q.G. Han, Y.L. Sheng, and X. Zhang, Preparation of a multifunctional P-CF@Mn3O4 composite as a structural anode material, New J. Chem., 45(2021), No. 35, p. 15808. doi: 10.1039/D1NJ02900B
    [43]
    X.Y. Han, Y.P. Cui, and H.W. Liu, Ce-doped Mn3O4 as high-performance anode material for lithium ion batteries, J. Alloys Compd., 814(2020), art. No. 152348. doi: 10.1016/j.jallcom.2019.152348
    [44]
    E. Thauer, X.Z. Shi, S. Zhang, et al., Mn3O4 encapsulated in hollow carbon spheres coated by graphene layer for enhanced magnetization and lithium-ion batteries performance, Energy, 217(2021), art. No. 119399. doi: 10.1016/j.energy.2020.119399
    [45]
    C.Y. Seong, S.K. Park, Y. Bae, S. Yoo, and Y.Z. Piao, An acid-treated reduced graphene oxide/Mn3O4 nanorod nanocomposite as an enhanced anode material for lithium ion batteries, RSC Adv., 7(2017), No. 60, p. 37502. doi: 10.1039/C7RA06396B
    [46]
    M.Y. Wang, Y. Huang, N. Zhang, K. Wang, X.F. Chen, and X. Ding, A facile synthesis of controlled Mn3O4 hollow polyhedron for high-performance lithium-ion battery anodes, Chem. Eng. J., 334(2018), p. 2383. doi: 10.1016/j.cej.2017.12.017
    [47]
    I. Ullah, Y.L. Xu, X.F. Du, et al., Al2O3 coated Mn3O4@C composite for LIBs anode with enhanced cycling stability and rate performance, Solid State Ionics, 320(2018), p. 226. doi: 10.1016/j.ssi.2018.03.009
    [48]
    B.B. Wang, F. Li, X.J. Wang, G. Wang, H. Wang, and J.T. Bai, Mn3O4 nanotubes encapsulated by porous graphene sheets with enhanced electrochemical properties for lithium/sodium-ion batteries, Chem. Eng. J., 364(2019), p. 57. doi: 10.1016/j.cej.2019.01.155
    [49]
    L.F. Peng, C. Yu, Z.Q. Zhang, et al., Tuning solid interfaces via varying electrolyte distributions enables high-performance solid-state batteries, Energy Environ. Mater., 2021. https://doi.org/10.1002/eem2.12308
    [50]
    L.F. Peng, H.T. Ren, J.Z. Zhang, et al., LiNbO3-coated LiNi0.7Co0.1Mn0.2O2 and chlorine-rich argyrodite enabling high-performance solid-state batteries under different temperatures, Energy Storage Mater., 43(2021), p. 53. doi: 10.1016/j.ensm.2021.08.028
    [51]
    X.Y. Wang, H. Hao, J.L. Liu, T. Huang, and A.S. Yu, A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries, Electrochim. Acta, 56(2011), No. 11, p. 4065. doi: 10.1016/j.electacta.2010.12.108
    [52]
    D.W. Zeng, J.M. Yao, L. Zhang, et al., Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes, Nat. Commun., 13(2022), No. 1, art. No. 1909. doi: 10.1038/s41467-022-29596-8
    [53]
    X.Q. Liu, G.S. Li, P.X. Qian, et al., Carbon coated Li3VO4 microsphere: Ultrafast solvothermal synthesis and excellent performance as lithium-ion battery anode, J. Power Sources, 493(2021), art. No. 229680. doi: 10.1016/j.jpowsour.2021.229680
    [54]
    J.J. Zhong, L. Qin, J.L. Li, Z. Yang, K. Yang, and M.J. Zhang, MOF-derived molybdenum selenide on Ti3C2Tx with superior capacitive performance for lithium-ion capacitors, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1061. doi: 10.1007/s12613-022-2469-5
    [55]
    X. Wang, Y.G. Li, S. Wang, et al., 2D amorphous V2O5/graphene heterostructures for high-safety aqueous Zn-ion batteries with unprecedented capacity and ultrahigh rate capability, Adv. Energy Mater., 10(2020), No. 22, art. No. 2000081. doi: 10.1002/aenm.202000081
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(614) PDF Downloads(41) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return