Pengpeng Bai, Shaowei Li, Jie Cheng, Xiangli Wen, Shuqi Zheng, Changfeng Chen, and Yu Tian, Improvement of hydrogen permeation barrier performance by iron sulphide surface films, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1792-1800. https://doi.org/10.1007/s12613-022-2593-2
Cite this article as:
Pengpeng Bai, Shaowei Li, Jie Cheng, Xiangli Wen, Shuqi Zheng, Changfeng Chen, and Yu Tian, Improvement of hydrogen permeation barrier performance by iron sulphide surface films, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1792-1800. https://doi.org/10.1007/s12613-022-2593-2
Research Article

Improvement of hydrogen permeation barrier performance by iron sulphide surface films

+ Author Affiliations
  • Corresponding authors:

    Shuqi Zheng    E-mail: zhengsq09@163.com

    Yu Tian    E-mail: tianyu@tsinghua.edu.cn

  • Received: 13 August 2022Revised: 25 December 2022Accepted: 27 December 2022Available online: 30 December 2022
  • Fe–S compounds with hexagonal crystal structure are potential hydrogen permeation barrier during H2S corrosion. Hexagonal system Fe–S films were prepared on carbon steel through corrosion and CVD deposition, and the barrier effect of different Fe–S films on hydrogen permeation was tested using electrochemical hydrogen permeation method. After that, the electrical properties of Fe–S compound during phase transformation were measured using thermoelectric measurement system. Results show that the mackinawite has no obvious barrier effect on hydrogen penetration, as a p-type semiconductor, and pyrrhotite (including troilite) has obvious barrier effect on hydrogen penetration, as an n-type semiconductor. Hydrogen permeation tests showed peak permeation performance when the surface was deposited with a continuous film of pyrrhotite (Fe1–xS) and troilite. The FeS compounds suppressed hydrogen permeation by the promotion of the hydrogen evolution reaction, semiconducting inversion from p- to n-type, and the migration of ions at the interface.
  • loading
  • Supplementary Information-s12613-022-2593-2.docx
  • [1]
    B.L. Zhang, Q.S. Zhu, C. Xu, et al., Atomic-scale insights on hydrogen trapping and exclusion at incoherent interfaces of nanoprecipitates in martensitic steels, Nat. Commun., 13(2022), No. 1, art. No. 3858. doi: 10.1038/s41467-022-31665-x
    [2]
    P.P. Bai, J. Zhou, B.W. Luo, S.Q. Zheng, P.Y. Wang, and Y. Tian, Hydrogen embrittlement of X80 pipeline steel in H2S environment: Effect of hydrogen charging time, hydrogen-trapped state and hydrogen charging–releasing–recharging cycles, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 63. doi: 10.1007/s12613-019-1870-1
    [3]
    A. Nagao, K. Hayashi, K. Oi, and S. Mitao, Effect of uniform distribution of fine cementite on hydrogen embrittlement of low carbon martensitic steel plates, ISIJ Int., 52(2012), No. 2, p. 213. doi: 10.2355/isijinternational.52.213
    [4]
    R. Balasubramaniam, On the role of chromium in minimizing room temperature hydrogen embrittlement in iron aluminides, Scripta Mater., 34(1996), No. 1, p. 127. doi: 10.1016/1359-6462(95)00495-5
    [5]
    A. Nagao, M.L. Martin, M. Dadfarnia, P. Sofronis, and I.M. Robertson, The effect of nanosized (Ti, Mo)C precipitates on hydrogen embrittlement of tempered lath martensitic steel, Acta Mater., 74(2014), p. 244. doi: 10.1016/j.actamat.2014.04.051
    [6]
    H.J. Seo, J.N. Kim, J.W. Jo, and C.S. Lee, Effect of tempering duration on hydrogen embrittlement of vanadium-added tempered martensitic steel, Int. J. Hydrogen Energy, 46(2021), No. 37, p. 19670. doi: 10.1016/j.ijhydene.2021.03.109
    [7]
    J. Yoo, M.C. Jo, D.W. Kim, et al., Effects of Cu addition on resistance to hydrogen embrittlement in 1 GPa-grade duplex lightweight steels, Acta Mater., 196(2020), p. 370. doi: 10.1016/j.actamat.2020.06.051
    [8]
    L.C. Liu, H.R. Gong, S.F. Zhou, and X. Gong, Adsorption, diffusion, and permeation of hydrogen at PdCu surfaces, J. Membr. Sci., 588(2019), art. No. 117206. doi: 10.1016/j.memsci.2019.117206
    [9]
    M. Nagumo and K. Takai, The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: Overview, Acta Mater., 165(2019), p. 722. doi: 10.1016/j.actamat.2018.12.013
    [10]
    R.J. Shi, Z.D. Wang, L.J. Qiao, and X.L. Pang, Effect of in-situ nanoparticles on the mechanical properties and hydrogen embrittlement of high-strength steel, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 644. doi: 10.1007/s12613-020-2157-2
    [11]
    Y.Y. Wu, S.M. Wang, S. Li, et al., Deuterium permeation properties of Er2O3/Cr2O3 composite coating prepared by MOCVD on 316L stainless steel, Fusion Eng. Des., 113(2016), p. 205. doi: 10.1016/j.fusengdes.2016.09.007
    [12]
    S.K. Dwivedi and M. Vishwakarma, Hydrogen embrittlement in different materials: A review, Int. J. Hydrogen Energy, 43(2018), No. 46, p. 21603. doi: 10.1016/j.ijhydene.2018.09.201
    [13]
    M.Y Zhang, R.Y. Zhao, Y.H. Ling, et al., Preparation of Cr2O3/Al2O3 bipolar oxides as hydrogen permeation barriers by selective oxide removal on SS and atomic layer deposition, Int. J. Hydrogen Energy, 44(2019), No. 23, p. 12277. doi: 10.1016/j.ijhydene.2019.03.086
    [14]
    S.K. Dwivedi and M. Vishwakarma, Hydrogen embrittlement prevention in high strength steels by application of various surface coatings – A review, [in] Advances in Manufacturing and Industrial Engineering: Select Proceedings of ICAPIE 2019, Singapore, 2021, p. 673.
    [15]
    A. Kahyarian, B. Brown, and S.Nešić, The unified mechanism of corrosion in aqueous weak acids solutions: A review of the recent developments in mechanistic understandings of mild steel corrosion in the presence of carboxylic acids, carbon dioxide, and hydrogen sulfide, Corrosion, 76(2020), No. 3, p. 268. doi: 10.5006/3474
    [16]
    M. Sabzi, A.H. Jozani, F. Zeidvandi, M. Sadeghi, and S.M. Dezfuli, Effect of 2-mercaptobenzothiazole concentration on sour-corrosion behavior of API X60 pipeline steel: Electrochemical parameters and adsorption mechanism, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 271. doi: 10.1007/s12613-020-2156-3
    [17]
    J.L. Crolet, Mechanisms of uniform corrosion under corrosion deposits, J. Mater. Sci., 28(1993), No. 10, p. 2589. doi: 10.1007/BF00356194
    [18]
    S.J. Gao, P. Jin, B. Brown, D. Young, S. Nešić, and M. Singer, Effect of high temperature on the aqueous H2S corrosion of mild steel, Corrosion, 73(2017), No. 10, p. 1188. doi: 10.5006/2523
    [19]
    S.Q. Zheng, C.S. Zhou, X.Y. Chen, L. Zhang, J.Y. Zheng, and Y.Z. Zhao, Dependence of the abnormal protective property on the corrosion product film formed on H2S-adjacent API-X52 pipeline steel, Int. J. Hydrogen Energy, 39(2014), No. 25, p. 13919. doi: 10.1016/j.ijhydene.2014.04.077
    [20]
    X.L. Wen, P.P. Bai, B.W. Luo, S.Q. Zheng, and C.F. Chen, Review of recent progress in the study of corrosion products of steels in a hydrogen sulphide environment, Corros. Sci., 139(2018), p. 124. doi: 10.1016/j.corsci.2018.05.002
    [21]
    T. Omura, T. Kobayashi, and M. Ueda, Ssc resistance of high strength low alloy steel octg in high pressure H2S environments, [in] NACE International Corrosion Conference Series, 2009.
    [22]
    C.S. Zhou, S.Q. Zheng, C.F. Chen, and G.W. Lu, The effect of the partial pressure of H2S on the permeation of hydrogen in low carbon pipeline steel, Corros. Sci., 67(2013), p. 184. doi: 10.1016/j.corsci.2012.10.016
    [23]
    C.S. Zhou, X.Y. Chen, Z. Wang, S.Q. Zheng, X. Li, and L. Zhang, Effects of environmental conditions on hydrogen permeation of X52 pipeline steel exposed to high H2S-containing solutions, Corros. Sci., 89(2014), p. 30. doi: 10.1016/j.corsci.2014.07.061
    [24]
    D. Rickard and G.W. Luther, Chemistry of iron sulfides, Chem. Rev., 107(2007), No. 2, p. 514. doi: 10.1021/cr0503658
    [25]
    P.P. Bai, S.Q. Zheng, C.F. Chen, and H. Zhao, Investigation of the iron–sulfide phase transformation in nanoscale, Cryst. Growth Des., 14(2014), No. 9, p. 4295. doi: 10.1021/cg500333p
    [26]
    F.X. Shi, L. Zhang, J.W. Yang, M.X. Lu, J.H. Ding, and H. Li, Polymorphous FeS corrosion products of pipeline steel under highly sour conditions, Corros. Sci., 102(2016), p. 103. doi: 10.1016/j.corsci.2015.09.024
    [27]
    J.B. Sardisco, W.B. Wright, and E.C. Greco, Corrosion of iron in on H2S–CO2–H2O system: Corrosion film properties on pure iron, Corrosion, 19(1963), No. 10, p. 354. doi: 10.5006/0010-9312-19.10.354
    [28]
    H.Y. Ma, X.L. Cheng, G.Q. Li, et al., The influence of hydrogen sulfide on corrosion of iron under different conditions, Corros. Sci., 42(2000), No. 10, p. 1669. doi: 10.1016/S0010-938X(00)00003-2
    [29]
    J.W. Yang, L. Zhang, L.N. Xu, and M. Lu, Influence of H2S and CO2 corrosion scales on hydrogen permeation in X65 steel, [in] NACE International Corrosion Conference Series, 2008.
    [30]
    Y.M. Qi, H.Y. Luo, S.Q. Zheng, C.F. Chen, Z.G. Lv, and M.X. Xiong, Comparison of tensile and impact behavior of carbon steel in H2S environments, Mater. Des., 58(2014), p. 234. doi: 10.1016/j.matdes.2014.01.065
    [31]
    A. Krishnamoorthy, Modeling of Mechanisms Affecting the Growth and Breakdown of Iron Sulfide Films [Dissertation], Massachusetts Institute of Technology, Cambridge, 2016.
    [32]
    P.P. Bai, H. Zhao, S.Q. Zheng, and C.F. Chen, Initiation and developmental stages of steel corrosion in wet H2S environments, Corros. Sci., 93(2015), p. 109. doi: 10.1016/j.corsci.2015.01.024
    [33]
    P.P. Bai, S.Q. Zheng, and C.F. Chen, Electrochemical characteristics of the early corrosion stages of API X52 steel exposed to H2S environments, Mater. Chem. Phys., 149-150(2015), p. 295. doi: 10.1016/j.matchemphys.2014.10.020
    [34]
    P.P. Bai, S.Q. Zheng, H. Zhao, Y. Ding, J. Wu, and C.F. Chen, Investigations of the diverse corrosion products on steel in a hydrogen sulfide environment, Corros. Sci., 87(2014), p. 397. doi: 10.1016/j.corsci.2014.06.048
    [35]
    Y.M. Qi, H.Y. Luo, S.Q. Zheng, C.F. Chen, and D.N. Wang, Effect of immersion time on the hydrogen content and tensile properties of A350LF2 steel exposed to hydrogen sulphide environments, Corros. Sci., 69(2013), p. 164. doi: 10.1016/j.corsci.2012.11.038
    [36]
    M.V. Devanathan, Z. Stachurski, and W. Beck, A technique for the evaluation of hydrogen embrittlement characteristics of electroplating baths, J. Electrochem. Soc., 110(2019), No. 8, p. 886.
    [37]
    P.P. Bai, Y.X. Liang, S.Q. Zheng, and C.F. Chen, Effect of amorphous FeS semiconductor on the corrosion behavior of pipe steel in H2S-containing environments, Ind. Eng. Chem. Res., 55(2016), No. 41, p. 10932. doi: 10.1021/acs.iecr.6b03000
    [38]
    W.K. Kim, S.U. Koh, B.Y. Yang, and K.Y. Kim, Effect of environmental and metallurgical factors on hydrogen induced cracking of HSLA steels, Corros. Sci., 50(2008), No. 12, p. 3336. doi: 10.1016/j.corsci.2008.09.030
    [39]
    J.S. Smith and J.D.A. Miller, Nature of sulphides and their corrosive effect on ferrous metals: A review, Br. Corros. J., 10(1975), No. 3, p. 136. doi: 10.1179/000705975798320701
    [40]
    R.J. Jiang, C.F. Chen, and S.Q. Zheng, The non-linear fitting method to analyze the measured M–S plots of bipolar passive films, Electrochim. Acta, 55(2010), No. 7, p. 2498. doi: 10.1016/j.electacta.2009.11.093
    [41]
    A.R. Lennie, S.A.T. Redfern, P.E. Champness, C.P. Stoddart, P.F. Schofield, and D.J. Vaughan, Transformation of mackinawite to greigite; an in situ X-ray powder diffraction and transmission electron microscope study, Am. Mineral., 82(1997), No. 3-4, p. 302. doi: 10.2138/am-1997-3-408
    [42]
    A.R. Lennie, S.A.T. Redfern, P.F. Schofield, and D.J. Vaughan, Synthesis and Rietveld crystal structure refinement of mackinawite, tetragonal FeS, Mineral. Mag., 59(1995), No. 397, p. 677. doi: 10.1180/minmag.1995.059.397.10
    [43]
    A.R. Lennie and D.J. Vaughan, Spectroscopic Studies of Iron Sulfide Formation and Phase Relations at Low Temperatures, Houston, The Geochemical Society, (1996)
    [44]
    A.R. Lennie, K.E.R. England, and D.J. Vaughan, Transformation of synthetic mackinawite to hexagonal pyrrhotite; a kinetic study, Am. Mineral., 80(1995), No. 9-10, p. 960. doi: 10.2138/am-1995-9-1012
    [45]
    Y.P. Varshni, Temperature dependence of the energy gap in semiconductors, Physica, 34(1967), No. 1, p. 149. doi: 10.1016/0031-8914(67)90062-6
    [46]
    T. Zhou, L.J. Wang, S.Q. Zheng, et al., Self-assembled 3D flower-like hierarchical Ti-doped Cu3SbSe4 microspheres with ultralow thermal conductivity and high zT, Nano Energy, 49(2018), p. 221. doi: 10.1016/j.nanoen.2018.04.035
    [47]
    B.W. Luo, P.P. Bai, T. An, et al., Vapor-deposited iron sulfide films as a novel hydrogen permeation barrier for steel: Deposition condition, defect effect, and hydrogen diffusion mechanism, Int. J. Hydrogen Energy, 43(2018), No. 32, p. 15564. doi: 10.1016/j.ijhydene.2018.06.042
    [48]
    S.K. Bhargava, A. Garg, and N.D. Subasinghe, In situ high-temperature phase transformation studies on pyrite, Fuel, 88(2009), No. 6, p. 988. doi: 10.1016/j.fuel.2008.12.005
    [49]
    P. Toulmin III and P.B. Barton Jr, A thermodynamic study of pyrite and pyrrhotite, Geochim. Cosmochim. Acta, 28(1964), No. 5, p. 641. doi: 10.1016/0016-7037(64)90083-3
    [50]
    M.C.L. de Oliveira, V.S.M. Pereira, O.V. Correa, N.B. de Lima, and R.A. Antunes, Correlation between the corrosion resistance and the semiconducting properties of the oxide film formed on AZ91D alloy after solution treatment, Corros. Sci., 69(2013), p. 311. doi: 10.1016/j.corsci.2012.12.015
    [51]
    C.Q. Ren, W.G. Wang, X. Jin, L. Liu, and T.H. Shi, Physicochemical performance of FeCO3 films influenced by anions, RSC Adv., 5(2015), No. 26, p. 20302. doi: 10.1039/C4RA14313B
    [52]
    G.A. Zhang, Y. Zeng, X.P. Guo, F. Jiang, D.Y. Shi, and Z.Y. Chen, Electrochemical corrosion behavior of carbon steel under dynamic high pressure H2S/CO2 environment, Corros. Sci., 65(2012), p. 37. doi: 10.1016/j.corsci.2012.08.007
    [53]
    X.L. Cheng, H.Y. Ma, S.H. Chen, X. Chen, and Z.M. Yao, Corrosion of nickel in acid solutions with hydrogen sulphide, Corros. Sci., 42(2000), No. 2, p. 299. doi: 10.1016/S0010-938X(99)00092-X
    [54]
    M.A. Lucio-Garcia, J.G. Gonzalez-Rodriguez, M. Casales, et al., Effect of heat treatment on H2S corrosion of a micro-alloyed C–Mn steel, Corros. Sci., 51(2009), No. 10, p. 2380. doi: 10.1016/j.corsci.2009.06.022
    [55]
    D.D. MacDonald, The point defect model for the passive state, J. Electrochem. Soc., 139(1992), No. 12, p. 3434. doi: 10.1149/1.2069096
    [56]
    D.D. Macdonald, The history of the point defect model for the passive state: A brief review of film growth aspects, Electrochim. Acta, 56(2011), No. 4, p. 1761. doi: 10.1016/j.electacta.2010.11.005
    [57]
    D.D. MacDonald, Passivity–the key to our metals-based civilization, Pure Appl. Chem., 71(1999), No. 6, p. 951. doi: 10.1351/pac199971060951
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(561) PDF Downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return