Cite this article as: |
Juan Yu, Yinbo Wei, Bicheng Meng, Jiaxin Peng, Kai Yang, Tianxing Chen, Naixing Yang, and Xiuyun Chuan, Homogeneous distributed natural pyrite-derived composite induced by modified graphite as high-performance lithium-ion batteries anode, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1353-1362. https://doi.org/10.1007/s12613-023-2598-5 |
Juan Yu E-mail: yujuan@xauat.edu.cn
Supplementary Information-s12613-023-2598-5.docx |
[1] |
R.J. He, G.L. Tian, S.P. Li, et al., Enhancing the reversibility of lithium cobalt oxide phase transition in thick electrode via low tortuosity design, Nano Lett., 22(2022), No. 6, p. 2429. doi: 10.1021/acs.nanolett.2c00123
|
[2] |
G. Li, T. Ouyang, T.Z. Xiong, et al., All-carbon-frameworks enabled thick electrode with exceptional high-areal-capacity for Li-Ion storage, Carbon, 174(2021), p. 1. doi: 10.1016/j.carbon.2020.12.018
|
[3] |
J. Li, D. Yan, S. Hou, et al., Metal-organic frameworks derived yolk–shell ZnO/NiO microspheres as high-performance anode materials for lithium-ion batteries, Chem. Eng. J., 335(2018), p. 579. doi: 10.1016/j.cej.2017.10.183
|
[4] |
H. Zhao, Y. Bai, H. Jin, J. Zhou, X. Wang, and C. Wu, Unveiling thermal decomposition kinetics of Single-Crystalline Ni-Rich LiNi0.88Co0.07Mn0.05O2 cathode for safe Lithium-Ion batteries, Chem. Eng. J., 435(2022), art. No. 134927. doi: 10.1016/j.cej.2022.134927
|
[5] |
J. Yuan, J.W. Zhu, R.H. Wang, et al., 3D few-layered MoS2/graphene hybrid aerogels on carbon fiber papers: A free-standing electrode for high-performance lithium/sodium-ion batteries, Chem. Eng. J., 398(2020), art. No. 125592. doi: 10.1016/j.cej.2020.125592
|
[6] |
X.Z. Liu, Y.H. Wang, Y.J. Yang, et al., A MoS2/Carbon hybrid anode for high-performance Li-ion batteries at low temperature, Nano Energy, 70(2020), art. No. 104550. doi: 10.1016/j.nanoen.2020.104550
|
[7] |
J.B. Li, J.L. Li, Z.B. Ding, et al.,In-situ encapsulation of Ni3S2 nanoparticles into N-doped interconnected carbon networks for efficient lithium storage, Chem. Eng. J., 378(2019), art. No. 122108. doi: 10.1016/j.cej.2019.122108
|
[8] |
H. Yang, T.Z. Xiong, Z.X. Zhu, et al., Deciphering the lithium storage chemistry in flexible carbon fiber-based self-supportive electrodes, Carbon Energy, 4(2022), No. 5, p. 820. doi: 10.1002/cey2.173
|
[9] |
Y.C. Huang, H. Yang, T.Z. Xiong, et al., Adsorption energy engineering of nickel oxide hybrid nanosheets for high areal capacity flexible lithium-ion batteries, Energy Storage Mater., 25(2020), p. 41. doi: 10.1016/j.ensm.2019.11.001
|
[10] |
C.D. Wang, M.H. Lan, Y. Zhang, et al., Fe1−xS/C nanocomposites from sugarcane waste-derived microporous carbon for high-performance lithium ion batteries, Green Chem., 18(2016), No. 10, p. 3029. doi: 10.1039/C5GC02938D
|
[11] |
M. Shao, Y.Y. Cheng, T. Zhang, et al., Designing MOFs-derived FeS2@Carbon composites for high-rate sodium ion storage with capacitive contributions, ACS Appl. Mater. Interfaces, 10(2018), No. 39, p. 33097. doi: 10.1021/acsami.8b10110
|
[12] |
N. Cheng, X. Chen, L. Zhang, and Z. Liu, Reduced graphene oxide doping flower-like Fe7S8 nanosheets for high performance potassium ion storage, J. Energy Chem., 54(2021), p. 604. doi: 10.1016/j.jechem.2020.06.043
|
[13] |
A.H. Jin, M.J. Kim, K.S. Lee, S.H. Yu, and Y.E. Sung, Spindle-like Fe7S8/N-doped carbon nanohybrids for high-performance sodium ion battery anodes, Nano Res., 12(2019), No. 3, p. 695. doi: 10.1007/s12274-019-2278-y
|
[14] |
S.Z. Huang, Y. Li, S. Chen, et al., Regulating the breathing of mesoporous Fe0.95S1.05 nanorods for fast and durable sodium storage, Energy Storage Mater., 32(2020), p. 151. doi: 10.1016/j.ensm.2020.06.039
|
[15] |
P. Jing, Q. Wang, B. Wang, X. Gao, Y. Zhang, and H. Wu, Encapsulating yolk–shell FeS2@carbon microboxes into interconnected graphene framework for ultrafast lithium/sodium storage, Carbon, 159(2020), p. 366. doi: 10.1016/j.carbon.2019.12.060
|
[16] |
Q. Wang, C. Tang, D.G. Sun, et al., Coupling Fe3O4/Fe1−xS@Carbon with carbon-coated MoS2 nanosheets as a superior anode for sodium-ion batteries, Chem. Eng. J., 427(2022), art. No. 131652. doi: 10.1016/j.cej.2021.131652
|
[17] |
L.Y. Zhang, Y.S. Zhang, Y.L. Han, et al., Bead-milling and recrystallization from natural marmatite to Fe-doping ZnS–C materials for lithium-ion battery anodes, Electrochim. Acta, 399(2021), art. No. 139430. doi: 10.1016/j.electacta.2021.139430
|
[18] |
W.Q. Zhao, L.M. Zhang, F. Jiang, et al., Engineering metal sulfides with hierarchical interfaces for advanced sodium-ion storage systems, J. Mater. Chem. A, 8(2020), No. 10, p. 5284. doi: 10.1039/C9TA13899D
|
[19] |
F. Jiang, Y.C. Bai, L.M. Zhang, et al., Modified bornite materials with high electrochemical performance for sodium and lithium storage, Energy Storage Mater., 40(2021), p. 150. doi: 10.1016/j.ensm.2021.04.046
|
[20] |
S.B. Son, T.A. Yersak, D.M. Piper, et al., A stabilized PAN-FeS2 cathode with an EC/DEC liquid electrolyte, Adv. Energy Mater., 4(2014), No. 3, art. No. 1300961. doi: 10.1002/aenm.201300961
|
[21] |
P. Ge, L.M. Zhang, W.Q. Zhao, Y. Yang, W. Sun, and X.B. Ji, Interfacial bonding of metal-sulfides with double carbon for improving reversibility of advanced alkali-ion batteries, Adv. Funct. Mater., 30(2020), No. 16, art. No. 1910599. doi: 10.1002/adfm.201910599
|
[22] |
F. Jiang, L.M. Zhang, W.Q. Zhao, et al., Microstructured sulfur-doped carbon-coated Fe7S8 composite for high-performance lithium and sodium storage, ACS Sustainable Chem. Eng., 8(2020), No. 31, p. 11783. doi: 10.1021/acssuschemeng.0c03936
|
[23] |
Y.E. Xiang, L.Q. Xu, L. Yang, et al., Natural stibnite for lithium-/sodium-ion batteries: Carbon dots evoked high initial coulombic efficiency, Nanomicro Lett., 14(2022), No. 1, art. No. 136. doi: 10.1007/s40820-022-00873-x
|
[24] |
J.R. He, Q. Li, Y.F. Chen, et al., Self-assembled cauliflower-like FeS2 anchored into graphene foam as free-standing anode for high-performance lithium-ion batteries, Carbon, 114(2017), p. 111. doi: 10.1016/j.carbon.2016.12.001
|
[25] |
D. Li, M.B. Müller, S. Gilje, R.B. Kaner, and G.G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol., 3(2008), No. 2, p. 101. doi: 10.1038/nnano.2007.451
|
[26] |
A.S. Wajid, S. Das, F. Irin, et al., Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production, Carbon, 50(2012), No. 2, p. 526. doi: 10.1016/j.carbon.2011.09.008
|
[27] |
J.X. Lin, Y.J. Huang, S. Wang, and G.H. Chen, Microwave-assisted rapid exfoliation of graphite into graphene by using ammonium bicarbonate as the intercalation agent, Ind. Eng. Chem. Res., 56(2017), No. 33, p. 9341. doi: 10.1021/acs.iecr.7b01302
|
[28] |
M. Vanitha, P. Camellia, and N. Balasubramanian, Augmentation of graphite purity from mineral resources and enhancing % graphitization using microwave irradiation: XRD and Raman studies, Diam. Relat. Mater., 88(2018), p. 129. doi: 10.1016/j.diamond.2018.07.009
|
[29] |
F. Tuinstra and J.L. Koenig, Raman spectrum of graphite, J. Chem. Phys., 53(1970), No. 3, p. 1126. doi: 10.1063/1.1674108
|
[30] |
H. Wu, W.F. Zhao, H.W. Hu, and G.H. Chen, One-step in situ ball milling synthesis of polymer-functionalized graphene nanocomposites, J. Mater. Chem., 21(2011), No. 24, p. 8626. doi: 10.1039/c1jm10819k
|
[31] |
A. El Din Mahmoud, A. Stolle, and M. Stelter, Sustainable synthesis of high-surface-area graphite oxide via dry ball milling, ACS Sustainable Chem. Eng., 6(2018), No. 5, p. 6358. doi: 10.1021/acssuschemeng.8b00147
|
[32] |
A.C. Ferrari, J.C. Meyer, V. Scardaci, et al., Raman spectrum of graphene and graphene layers, Phys. Rev. Lett., 97(2006), No. 18, art. No. 187401. doi: 10.1103/PhysRevLett.97.187401
|
[33] |
S.K. Bhargava, A. Garg, and N.D. Subasinghe, In situ high-temperature phase transformation studies on pyrite, Fuel, 88(2009), No. 6, p. 988. doi: 10.1016/j.fuel.2008.12.005
|
[34] |
W.H. Chen, X.X. Zhang, L.W. Mi, et al., High-performance flexible freestanding anode with hierarchical 3D carbon-networks/Fe7S8/graphene for applicable sodium-ion batteries, Adv. Mater., 31(2019), No. 8, art. No. 1806664. doi: 10.1002/adma.201806664
|
[35] |
J.H. Lu, F. Lian, L.L. Guan, Y.X. Zhang, and F. Ding, Adapting FeS2 micron particles as an electrode material for lithium-ion batteries via simultaneous construction of CNT internal networks and external cages, J. Mater. Chem. A, 7(2019), No. 3, p. 991. doi: 10.1039/C8TA09955C
|
[36] |
K.H. Ye, Y. Li, H. Yang, et al., An ultrathin carbon layer activated CeO2 heterojunction nanorods for photocatalytic degradation of organic pollutants, Appl. Catal. B, 259(2019), art. No. 118085. doi: 10.1016/j.apcatb.2019.118085
|
[37] |
Y.X. Wang, D.M. Chen, J.N. Zhang, et al., Charge relays via dual carbon-actions on nanostructured BiVO4 for high performance photoelectrochemical water splitting, Adv. Funct. Mater., 32(2022), No. 13, art. No. 2112738. doi: 10.1002/adfm.202112738
|
[38] |
H.H. Fan, H.H. Li, K.C. Huang, et al., Metastable marcasite-FeS2 as a new anode material for lithium ion batteries: CNFs-improved lithiation/delithiation reversibility and Li-storage properties, ACS Appl. Mater. Interfaces, 9(2017), No. 12, p. 10708. doi: 10.1021/acsami.7b00578
|
[39] |
Z. Li, W. Wang, M.J. Zhou, et al.,In-situ self-templated preparation of porous core–shell Fe1−xS@N,S co-doped carbon architecture for highly efficient oxygen reduction reaction, J. Energy Chem., 54(2021), p. 310. doi: 10.1016/j.jechem.2020.06.010
|
[40] |
Y. Zhang, J. Li, Z. Gong, J. Xie, T. Lu, and L. Pan, Nitrogen and sulfur co-doped vanadium carbide MXene for highly reversible lithium-ion storage, J. Colloid Interface Sci., 587(2021), p. 489. doi: 10.1016/j.jcis.2020.12.044
|
[41] |
J.H. Lv, J.T. Du, H.N. Jia, et al., Hierarchical carbon-coated Fe1−xS/mesocarbon microbeads composite as high-performance lithium-ion batteries anode, Ceram. Int., 46(2020), No. 7, p. 9485. doi: 10.1016/j.ceramint.2019.12.209
|
[42] |
X.X. Xu, Q.N. Ma, Z.H. Zhang, et al., Pomegranate-like mesoporous microspheres assembled by N-doped carbon coated Fe1−xS nanocrystals for high-performance lithium storage, J. Alloys Compd., 797(2019), p. 952. doi: 10.1016/j.jallcom.2019.05.222
|
[43] |
C.Z. Zhang, D.H. Wei, F. Wang, et al., Highly active Fe7S8 encapsulated in N-doped hollow carbon nanofibers for high-rate sodium-ion batteries, J. Energy Chem., 53(2021), p. 26. doi: 10.1016/j.jechem.2020.05.011
|
[44] |
X. Li, T. Liu, Y.X. Wang, et al., S/N-doped carbon nanofibers affording Fe7S8 particles with superior sodium storage, J. Power Sources, 451(2020), art. No. 227790. doi: 10.1016/j.jpowsour.2020.227790
|
[45] |
S. Zhang, J. Mi, H. Zhao, W. Ma, L. Dang, and L. Yue, Electrospun N-doped carbon nanofibers confined Fe1−xS composite as superior anode material for sodium-ion battery, J. Alloys Compd., 842(2020), art. No. 155642. doi: 10.1016/j.jallcom.2020.155642
|
[46] |
Y. Zhang, G.G. Zhao, X. Lv, et al., Exploration and size engineering from natural chalcopyrite to high-performance electrode materials for lithium-ion batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 6, p. 6154. doi: 10.1021/acsami.8b22094
|
[47] |
H.C. Jin, S. Xin, C.H. Chuang, et al., Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage, Science, 370(2020), No. 6513, p. 192. doi: 10.1126/science.aav5842
|
[48] |
W.J. Yu, C. Liu, L.L. Zhang, et al., Synthesis and electrochemical lithium storage behavior of carbon nanotubes filled with iron sulfide nanoparticles, Adv. Sci., 3(2016), No. 10, art. No. 1600113. doi: 10.1002/advs.201600113
|
[49] |
A.K. Haridas, J. Heo, Y. Liu, et al., Boosting high energy density lithium-ion storage via the rational design of an FeS-incorporated sulfurized polyacrylonitrile fiber hybrid cathode, ACS Appl. Mater. Interfaces, 11(2019), No. 33, p. 29924. doi: 10.1021/acsami.9b09026
|
[50] |
Y.Y. Yao, J.C. Zheng, Z.Y. Gong, et al., Metal-organic framework derived flower-like FeS/C composite as an anode material in lithium-ion and sodium-ion batteries, J. Alloys Compd., 790(2019), p. 288. doi: 10.1016/j.jallcom.2019.03.098
|
[51] |
Y. Xiao, J.Y. Hwang, and Y.K. Sun, Micro-intertexture carbon-free iron sulfides as advanced high tap density anodes for rechargeable batteries, ACS Appl. Mater. Interfaces, 9(2017), No. 45, p. 39416. doi: 10.1021/acsami.7b13239
|
[52] |
F.J. Zhao, L.Y. Yang, Z. Wang, et al., Enhancing lithium storage performance of metal sulfide compound via Fe1−xS/SnS@C complementary heterostructure design, J. Power Sources, 536(2022), art. No. 231460. doi: 10.1016/j.jpowsour.2022.231460
|
[53] |
Y. Wu, Y.Y. Wang, S.Q. Shao, et al., Transformation of two-dimensional iron sulfide nanosheets from FeS2 to FeS as high-rate anodes for pseudocapacitive sodium storage, ACS Appl. Energy Mater., 3(2020), No. 12, p. 12672. doi: 10.1021/acsaem.0c02590
|
[54] |
Q.Q. Xiong, X.J. Teng, J.J. Lou, et al., Design of pyrite/carbon nanospheres as high-capacity cathode for lithium-ion batteries, J. Energy Chem., 40(2020), p. 1. doi: 10.1016/j.jechem.2019.02.005
|
[55] |
Y. Wang, X.M. Guo, Z.K. Wang, et al., Controlled pyrolysis of MIL-88A to Fe2O3@C nanocomposites with varied morphologies and phases for advanced lithium storage, J. Mater. Chem. A, 5(2017), No. 48, p. 25562. doi: 10.1039/C7TA08314A
|
[56] |
S. Shi, M. Zhang, T. Deng, T. Wang and G. Yang, A facile strategy to construct binder-free flexible carbonate composite anode at low temperature with high performances for lithium-ion batteries, Electrochim. Acta, 246(2017), p. 1004. doi: 10.1016/j.electacta.2017.06.135
|
[57] |
W. Chen, Q.Z. Li, H.X. Zhang, X.H. Wu, W.W. Wu, and M. Xu, Rational synthesis of fern leaf-like FeS2@Sulfur-doped carbon as an anode for superior lithium-ion batteries, Energy Fuels, 35(2021), No. 15, p. 12599. doi: 10.1021/acs.energyfuels.1c01269
|
[58] |
S. Yuan, W. Zhao, Z. Zeng, et al., Engineering hierarchical Sb2S3/N–C from natural minerals with stable phase-change towards all-climate energy storage, J. Mater. Chem. A, 10(2022), No. 10, p. 5488. doi: 10.1039/D1TA10832H
|