Cite this article as: |
Yunjie Liu, Yupeng Wu, Fuhai Guo, Yingming Liu, Shirong Zhao, Siqi Li, Weizhuo Yu, and Lanzhong Hao, Flexible broadband WS2/Si optical position-sensitive detector with high sensitivity and fast speed, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1217-1224. https://doi.org/10.1007/s12613-023-2600-2 |
Lanzhong Hao E-mail: haolanzhong@upc.edu.cn
Supplementary Information-s12613-023-2600-2.docx |
[1] |
J.T. Wallmark, A new semiconductor photocell using lateral photoeffect, Proc. IRE, 45(1957), No. 4, p. 474. doi: 10.1109/JRPROC.1957.278435
|
[2] |
N. Tabatabaie, M.H. Meynadier, R.E. Nahory, J.P. Harbison, and L.T. Florez, Large lateral photovoltaic effect in modulation-doped AlGaAs/GaAs heterostructures, Appl. Phys. Lett., 55(1989), No. 8, p. 792. doi: 10.1063/1.101762
|
[3] |
J.P. Cascales, I. Martínez, D. Díaz, J.A. Rodrigo, and F.G. Aliev, Transient lateral photovoltaic effect in patterned metal-oxide-semiconductor films, Appl. Phys. Lett., 104(2014), No. 23, art. No. 231118. doi: 10.1063/1.4882701
|
[4] |
S. Liu, C.Q. Yu, and H. Wang, Colossal lateral photovoltaic effect observed in metal-oxide-semiconductor structure of Ti/TiO2/Si, IEEE Electron Device Lett., 33(2012), No. 3, p. 414. doi: 10.1109/LED.2011.2181325
|
[5] |
J.Y. Du, P.F. Zhu, P. Song, et al., Two-dimensional lateral photovoltaic effect in MOS structure of Ti–SiO2–Si, J. Phys. D: Appl. Phys., 54(2021), No. 40, art. No. 405105. doi: 10.1088/1361-6463/ac12f6
|
[6] |
X.Y. Dong, D.Y. Zheng, J. Lu, Y.R. Niu, and H. Wang, Efficient hot electron extraction in Ag–Cu/TiO2 for high performance lateral photovoltaic effect, IEEE Electron Device Lett., 42(2021), No. 10, p. 1500. doi: 10.1109/LED.2021.3106740
|
[7] |
S. Liu, H. Wang, Y.J. Yao, L. Chen, and Z.L. Wang, Lateral photovoltaic effect observed in nano Au film covered two-dimensional colloidal crystals, Appl. Phys. Lett., 104(2014), No. 11, art. No. 111110. doi: 10.1063/1.4869223
|
[8] |
L. Du and H. Wang, Infrared laser induced lateral photovoltaic effect observed in Cu2O nanoscale film, Opt. Express, 18(2010), No. 9, p. 9113. doi: 10.1364/OE.18.009113
|
[9] |
C.Q. Yu, H. Wang, S.Q. Xiao, and Y.X. Xia, Direct observation of lateral photovoltaic effect in nano-metal-films, Opt. Express, 17(2009), No. 24, p. 21712. doi: 10.1364/OE.17.021712
|
[10] |
C. Xie, C. Mak, X.M. Tao, and F. Yan, Photodetectors based on two-dimensional layered materials beyond graphene, Adv. Funct. Mater., 27(2017), No. 19, art. No. 1603886. doi: 10.1002/adfm.201603886
|
[11] |
H.H. Yu, Z.H. Cao, Z. Zhang, X.K. Zhang, and Y. Zhang, Flexible electronics and optoelectronics of 2D van der Waals materials, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 671. doi: 10.1007/s12613-022-2426-3
|
[12] |
W.H. Wu, Q. Zhang, X. Zhou, et al., Self-powered photovoltaic photodetector established on lateral monolayer MoS2-WS2 heterostructures, Nano Energy, 51(2018), p. 45. doi: 10.1016/j.nanoen.2018.06.049
|
[13] |
H.S. Kim, M. Patel, J. Kim, and M.S. Jeong, Growth of wafer-scale standing layers of WS2 for self-biased high-speed UV-visible-NIR optoelectronic devices, ACS Appl. Mater. Interfaces, 10(2018), No. 4, p. 3964. doi: 10.1021/acsami.7b16397
|
[14] |
P. Gant, P. Huang, D. Pérez de Lara, D. Guo, R. Frisenda, and A. Castellanos-Gomez, A strain tunable single-layer MoS2 photodetector, Mater. Today, 27(2019), p. 8. doi: 10.1016/j.mattod.2019.04.019
|
[15] |
J.X. Guo, S.D. Li, Z.B. He, et al., Near-infrared photodetector based on few-layer MoS2 with sensitivity enhanced by localized surface plasmon resonance, Appl. Surf. Sci., 483(2019), p. 1037. doi: 10.1016/j.apsusc.2019.04.044
|
[16] |
J.W. Kang, C. Zhang, K.J. Cao, et al., High-performance light trajectory tracking and image sensing devices based on a γ-In2Se3/GaAs heterostructure, J. Mater. Chem. C, 8(2020), No. 39, p. 13762. doi: 10.1039/D0TC03872E
|
[17] |
M.R. Ma, H.H. Chen, K.N. Zhou, et al., Multilayered PtSe2/pyramid-Si heterostructure array with light confinement effect for high-performance photodetection, image sensing and light trajectory tracking applications, J. Mater. Chem. C, 9(2021), No. 8, p. 2823. doi: 10.1039/D0TC05701K
|
[18] |
R.D. Cong, S. Qiao, J.H. Liu, et al., Ultrahigh, ultrafast, and self-powered visible-near-infrared optical position-sensitive detector based on a CVD-prepared vertically standing few-layer MoS2/Si heterojunction, Adv. Sci., 5(2018), No. 2, art. No. 1700502. doi: 10.1002/advs.201700502
|
[19] |
Y.T. Zheng, J.J. Wei, J.L. Liu, et al., Carbon materials: The burgeoning promise in electronics, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 404. doi: 10.1007/s12613-021-2358-3
|
[20] |
C.S. Solanki, R.R. Bilyalov, J. Poortmans, J. Nijs, and R. Mertens, Porous silicon layer transfer processes for solar cells, Sol. Energy Mater. Sol. Cells, 83(2004), No. 1, p. 101. doi: 10.1016/j.solmat.2004.02.016
|
[21] |
T.P. Jiao, D.P. Wei, J. Liu, et al., Flexible solar cells based on graphene-ultrathin silicon Schottky junction, RSC Adv., 5(2015), No. 89, p. 73202. doi: 10.1039/C5RA13488A
|
[22] |
X.K. Li, M. Mariano, L. McMillon-Brown, et al., Charge transfer from carbon nanotubes to silicon in flexible carbon nanotube/silicon solar cells, Small, 13(2017), No. 48, art. No. 1702387. doi: 10.1002/smll.201702387
|
[23] |
I. Hwang, H.D. Um, B.S. Kim, M. Wober, and K. Seo, Flexible crystalline silicon radial junction photovoltaics with vertically aligned tapered microwires, Energy Environ. Sci., 11(2018), No. 3, p. 641. doi: 10.1039/C7EE03340K
|
[24] |
K.Q. Ruan, K. Ding, Y.M. Wang, et al., Flexible graphene/silicon heterojunction solar cells, J. Mater. Chem. A, 3(2015), No. 27, p. 14370. doi: 10.1039/C5TA03652F
|
[25] |
S.Y. Saha, M.M. Hilali, E.U. Onyegam, et al., Single heterojunction solar cells on exfoliated flexible ~25 μm thick mono-crystalline silicon substrates, Appl. Phys. Lett., 102(2013), No. 16, art. No. 163904. doi: 10.1063/1.4803174
|
[26] |
Y.J. Dai, X.F. Wang, W.B. Peng, et al., Self-powered Si/CdS flexible photodetector with broadband response from 325 to 1550 nm based on pyro-phototronic effect: An approach for photosensing below bandgap energy, Adv. Mater., 30(2018), No. 9, art. No. 1705893. doi: 10.1002/adma.201705893
|
[27] |
D.H. Li, H. Zheng, Z.Y. Wang, et al., Dielectric functions and critical points of crystalline WS2 ultrathin films with tunable thickness, Phys. Chem. Chem. Phys., 19(2017), No. 19, p. 12022. doi: 10.1039/C7CP00660H
|
[28] |
C.Y. Lan, C. Li, S. Wang, et al., Zener tunneling and photoresponse of a WS2/Si van der waals heterojunction, ACS Appl. Mater. Interfaces, 8(2016), No. 28, p. 18375. doi: 10.1021/acsami.6b05109
|
[29] |
L.Z. Hao, H. Liu, H.Y. Xu, et al., Flexible Pd-WS2/Si heterojunction sensors for highly sensitive detection of hydrogen at room temperature, Sens. Actuators B, 283(2019), p. 740. doi: 10.1016/j.snb.2018.12.062
|
[30] |
S. Liu, X. Xie, and H. Wang, Lateral photovoltaic effect and electron transport observed in Cr nano-film, Opt. Express, 22(2014), No. 10, p. 11627. doi: 10.1364/OE.22.011627
|
[31] |
C. Hu, X.J. Wang, P. Miao, et al., Origin of the ultrafast response of the lateral photovoltaic effect in amorphous MoS2/Si junctions, ACS Appl. Mater. Interfaces, 9(2017), No. 21, p. 18362. doi: 10.1021/acsami.7b04298
|
[32] |
S. Qiao, K.Y. Feng, Z. Li, G.S. Fu, and S.F. Wang, Ultrahigh, ultrafast and large response size visible-near-infrared optical position sensitive detectors based on CIGS structures, J. Mater. Chem. C, 5(2017), No. 20, p. 4915. doi: 10.1039/C7TC01462G
|
[33] |
T.T. Xu, Y.P. Han, L. Lin, et al., Self-power position-sensitive detector with fast optical relaxation time and large position sensitivity basing on the lateral photovoltaic effect in tin diselenide films, J. Alloys Compd., 790(2019), p. 941. doi: 10.1016/j.jallcom.2019.03.293
|
[34] |
S. Qiao, J.H. Chen, J.H. Liu, N. Fu, G.Y. Yan, and S.F. Wang, Distance-dependent lateral photovoltaic effect in a-Si:H(p)/a-Si:H(i)/c-Si(n) structure, Appl. Surf. Sci., 356(2015), p. 732. doi: 10.1016/j.apsusc.2015.08.144
|
[35] |
Y. Yao, Z.W. Jin, Y.H. Chen, et al., Graphdiyne-WS2 2D-Nanohybrid electrocatalysts for high-performance hydrogen evolution reaction, Carbon, 129(2018), p. 228. doi: 10.1016/j.carbon.2017.12.024
|
[36] |
X.J. Wang, B.Q. Song, M.X. Huo, et al., Fast and sensitive lateral photovoltaic effects in Fe3O4/Si Schottky junction, RSC Adv., 5(2015), No. 80, p. 65048. doi: 10.1039/C5RA11872G
|
[37] |
Y.G. Du, Q.Z. Xue, Z.Y. Zhang, F.J. Xia, J.P. Li, and Z.D. Han, Hydrogen gas sensing properties of Pd/a-C:Pd/SiO2/Si structure at room temperature, Sens. Actuators B, 186(2013), p. 796. doi: 10.1016/j.snb.2013.06.067
|
[38] |
P. Sharma, R. Bhardwaj, A. Kumar, and S. Mukherjee, Trap assisted charge multiplication enhanced photoresponse of Li–P codoped p-ZnO/n-Si heterojunction ultraviolet photodetectors, J. Phys. D: Appl. Phys., 51(2018), No. 1, art. No. 015103. doi: 10.1088/1361-6463/aa98fb
|
[39] |
X.J. Wang, X.F. Zhao, C. Hu, et al., Large lateral photovoltaic effect with ultrafast relaxation time in SnSe/Si junction, Appl. Phys. Lett., 109(2016), No. 2, art. No. 023502. doi: 10.1063/1.4955480
|
[40] |
L.Z. Hao, Y.J. Liu, Z.D. Han, Z.J. Xu, and J. Zhu, Giant lateral photovoltaic effect in MoS2/SiO2/Si p-i-n junction, J. Alloys Compd., 735(2018), p. 88. doi: 10.1016/j.jallcom.2017.11.094
|
[41] |
T. Yang, Y.P. Zheng, K.C. Chou, and X.M. Hou, Tunable fabrication of single-crystalline CsPbI3 nanobelts and their application as photodetectors, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 1030. doi: 10.1007/s12613-020-2173-2
|
[42] |
J. Mao, Y.Q. Yu, L. Wang, et al., Ultrafast, broadband photodetector based on MoSe2/silicon heterojunction with vertically standing layered structure using graphene as transparent electrode, Adv. Sci., 3(2016), No. 11, art. No. 1600018. doi: 10.1002/advs.201600018
|
[43] |
Y. Zhang, Y. Zhang, T. Yao, C. Hu, Y. Sui, and X.J. Wang, Ultrahigh position sensitivity and fast optical relaxation time of lateral photovoltaic effect in Sb2Se3/p-Si junctions, Opt. Express, 26(2018), No. 26, p. 34214. doi: 10.1364/OE.26.034214
|
[44] |
S. Qiao, M.J. Chen, Y. Wang, et al., Ultrabroadband, large sensitivity position sensitivity detector based on a Bi2Te2.7Se0.3/Si heterojunction and its performance improvement by pyro-phototronic effect, Adv. Electron Mater., 5(2019), No. 12, art. No. 1900786. doi: 10.1002/aelm.201900786
|
[45] |
T.H. Nguyen, T. Nguyen, A.R.M. Foisal, et al., Generation of a charge carrier gradient in a 3C–SiC/Si heterojunction with asymmetric configuration, ACS Appl. Mater. Interfaces, 13(2021), No. 46, p. 55329. doi: 10.1021/acsami.1c15942
|