Cite this article as: |
Xiaomeng Li, Pengcheng Jia, Fanwen Meng, Xingyu Zhang, Yang Tang, Bo Song, Chang Gao, Liang Qin, Feng Teng, and Yanbing Hou, Propylamine hydrobromide passivated tin-based perovskites to efficient solar cells, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1965-1972. https://doi.org/10.1007/s12613-023-2604-y |
Liang Qin E-mail: qinliang@bjtu.edu.cn
Yanbing Hou E-mail: ybhou@bjtu.edu.cn
Supplementary Information-10.1007s12613-023-2604-y.docx |
[1] |
M.A. Green, Y.J. Jiang, A.M. Soufiani, and A. Ho-Baillie, Optical properties of photovoltaic organic–inorganic lead halide perovskites, J. Phys. Chem. Lett., 6(2015), No. 23, p. 4774. doi: 10.1021/acs.jpclett.5b01865
|
[2] |
G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, and H.J. Snaith, Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells, Energy Environ. Sci., 7(2014), No. 3, p. 982. doi: 10.1039/c3ee43822h
|
[3] |
S.R. Wang, X. Zhang, W.K. Zhu, et al., Lewis base manipulated crystallization for efficient tin halide perovskite solar cells, Appl. Surf. Sci., 602(2022), art. No. 154393. doi: 10.1016/j.apsusc.2022.154393
|
[4] |
P. You, G.J. Li, G.Q. Tang, J.P. Cao, and F. Yan, Ultrafast laser-annealing of perovskite films for efficient perovskite solar cells, Energy Environ. Sci., 13(2020), No. 4, p. 1187. doi: 10.1039/C9EE02324K
|
[5] |
M.A. Green, A. Ho-Baillie, and H.J. Snaith, The emergence of perovskite solar cells, Nat. Photonics, 8(2014), No. 7, p. 506. doi: 10.1038/nphoton.2014.134
|
[6] |
M. Pitaro, E.K. Tekelenburg, S.Y. Shao, and M.A. Loi, Tin halide perovskites: From fundamental properties to solar cells, Adv. Mater., 34(2022), No. 1, art. No. 2105844. doi: 10.1002/adma.202105844
|
[7] |
S. Gu, R.X. Lin, Q.L. Han, Y. Gao, H.R. Tan, and J. Zhu, Tin and mixed lead–tin halide perovskite solar cells: Progress and their application in tandem solar cells, Adv. Mater., 32(2020), No. 27, art. No. 1907392. doi: 10.1002/adma.201907392
|
[8] |
National Renewable Energy Laboratory (NREL), Best Research-Cell Efficiency Chart [2022-08 -18]. https://www.nrel.gov/pv/cell-efficiency.html?tdsourcetag=s_pcqq_aiomsg.
|
[9] |
Z.B. Que, L. Chu, S.B. Zhai, et al., Self-assembled TiO2 hole-blocking layers for efficient perovskite solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1280. doi: 10.1007/s12613-021-2361-8
|
[10] |
J.P. Cao and F. Yan, Recent progress in tin-based perovskite solar cells, Energy Environ. Sci., 14(2021), No. 3, p. 1286. doi: 10.1039/D0EE04007J
|
[11] |
C.C. Boyd, R. Cheacharoen, T. Leijtens, and M.D. McGehee, Understanding degradation mechanisms and improving stability of perovskite photovoltaics, Chem. Rev., 119(2019), No. 5, p. 3418. doi: 10.1021/acs.chemrev.8b00336
|
[12] |
R.L. Milot, M.T. Klug, C.L. Davies, et al., The effects of doping density and temperature on the optoelectronic properties of formamidinium tin triiodide thin films, Adv. Mater., 30(2018), No. 44, art. No. 1804506. doi: 10.1002/adma.201804506
|
[13] |
T.H. Wu, X. Liu, X.H. Luo, et al., Lead-free tin perovskite solar cells, Joule, 5(2021), No. 4, p. 863. doi: 10.1016/j.joule.2021.03.001
|
[14] |
W.Y. Gao, P.Z. Li, J.B. Chen, C.X. Ran, and Z.X. Wu, Interface engineering in tin perovskite solar cells, Adv. Mater. Interfaces, 6(2019), No. 24, art. No. 1901322. doi: 10.1002/admi.201901322
|
[15] |
M. Aldamasy, Z. Iqbal, G.X. Li, et al., Challenges in tin perovskite solar cells, Phys. Chem. Chem. Phys., 23(2021), No. 41, p. 23413. doi: 10.1039/D1CP02596A
|
[16] |
X. Zhang, S.R. Wang, W.K. Zhu, Z.Y. Cao, A.L. Wang, and F. Hao, The voltage loss in tin halide perovskite solar cells: Origins and perspectives, Adv. Funct. Mater., 32(2022), No. 8, art. No. 2108832. doi: 10.1002/adfm.202108832
|
[17] |
B. Chen, S.R. Wang, X. Zhang, W.K. Zhu, Z.Y. Cao, and F. Hao, Reducing the interfacial voltage loss in tin halides perovskite solar cells, Chem. Eng. J., 445(2022), art. No. 136769. doi: 10.1016/j.cej.2022.136769
|
[18] |
W.S. Yang, J.H. Noh, N.J. Jeon, et al., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 348(2015), No. 6240, p. 1234. doi: 10.1126/science.aaa9272
|
[19] |
K. Nishimura, M.A. Kamarudin, D. Hirotani, et al., Lead-free tin-halide perovskite solar cells with 13% efficiency, Nano Energy, 74(2020), art. No. 104858. doi: 10.1016/j.nanoen.2020.104858
|
[20] |
M. Konstantakou and T. Stergiopoulos, A critical review on tin halide perovskite solar cells, J. Mater. Chem. A, 5(2017), No. 23, p. 11518. doi: 10.1039/C7TA00929A
|
[21] |
W.F. Yang, F. Igbari, Y.H. Lou, Z.K. Wang, and L.S. Liao, Tin halide perovskites: Progress and challenges, Adv. Energy Mater., 10(2020), No. 13, art. No. 1902584. doi: 10.1002/aenm.201902584
|
[22] |
Z.H. Zhang, Z.C. Li, L.Y. Meng, S.Y. Lien, and P. Gao, Perovskite-based tandem solar cells: Get the most out of the sun, Adv. Funct. Mater., 30(2020), No. 38, art. No. 2001904. doi: 10.1002/adfm.202001904
|
[23] |
X. Liu, T.H. Wu, X.H. Luo, et al., Lead-free perovskite solar cells with over 10% efficiency and size 1 cm2 enabled by solvent-crystallization regulation in a two-step deposition method, ACS Energy Lett., 7(2022), No. 1, p. 425. doi: 10.1021/acsenergylett.1c02651
|
[24] |
Z. Zhang, M.A. Kamarudin, A.K. Baranwal, et al., Indent-free vapor-assisted surface passivation strategy toward tin halide perovskite solar cells, ACS Appl. Mater. Interfaces, 14(2022), No. 31, p. 36200. doi: 10.1021/acsami.2c06046
|
[25] |
A. Al-Ashouri, E. Köhnen, B. Li, et al., Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction, Science, 370(2020), No. 6522, p. 1300. doi: 10.1126/science.abd4016
|
[26] |
X. Liu, T.H. Wu, C.Y. Zhang, Y.Q. Zhang, H. Segawa, and L.Y. Han, Interface energy-level management toward efficient tin perovskite solar cells with hole-transport-layer-free structure, Adv. Funct. Mater., 31(2021), No. 50, art. No. 2106560. doi: 10.1002/adfm.202106560
|
[27] |
W. Bumrungsan, K. Hongsith, V. Yarangsi, et al., Efficiency enhancement of Cs0.1(CH3NH3)0.9PbI3 perovskite solar cell by surface passivation using iso-butyl ammonium iodide, Int. J. Miner. Metall. Mater., 29(2022), No. 11, p. 1963. doi: 10.1007/s12613-021-2382-3
|
[28] |
Y.T. Xu, K.J. Jiang, P.C. Wang, et al., Highly oriented quasi-2D layered tin halide perovskites with 2-thiopheneethylammonium iodide for efficient and stable tin perovskite solar cells, New J. Chem., 46(2022), No. 5, p. 2259. doi: 10.1039/D1NJ05178D
|
[29] |
Z.S. Dai, T. Lv, J. Barbaud, et al., Stable tin perovskite solar cells developed via additive engineering, Sci. China Mater., 64(2021), No. 11, p. 2645. doi: 10.1007/s40843-021-1670-0
|
[30] |
X. Liu, Y.B. Wang, T.H. Wu, et al., Efficient and stable tin perovskite solar cells enabled by amorphous-polycrystalline structure, Nat. Commun., 11(2020), No. 1, art. No. 2678. doi: 10.1038/s41467-020-16561-6
|
[31] |
M.M. Zhang, Z.G. Zhang, H.H. Cao, et al., Recent progress in inorganic tin perovskite solar cells, Mater. Today Energy, 23(2022), art. No. 100891. doi: 10.1016/j.mtener.2021.100891
|
[32] |
G.X. Li, Z.H. Su, M. Li, et al., Ionic liquid stabilizing high-efficiency tin halide perovskite solar cells, Adv. Energy Mater., 11(2021), No. 32, art. No. 2101539. doi: 10.1002/aenm.202101539
|
[33] |
X. Liu, T.H. Wu, J.Y. Chen, et al., Templated growth of FASnI3 crystals for efficient tin perovskite solar cells, Energy Environ. Sci., 13(2020), No. 9, p. 2896. doi: 10.1039/D0EE01845G
|
[34] |
B.B. Yu, Z.H. Chen, Y.D. Zhu, et al., Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14%, Adv. Mater., 33(2021), No. 36, art. No. 2102055. doi: 10.1002/adma.202102055
|
[35] |
H.S. Li, X.Y. Jiang, Q. Wei, et al., Low-dimensional inorganic tin perovskite solar cells prepared by templated growth, Angew. Chem. Int. Ed., 60(2021), No. 30, p. 16330. doi: 10.1002/anie.202104958
|
[36] |
M.A. Kamarudin, S.R. Sahamir, K. Nishimura, et al., Suppression of defect and trap density through dimethylammonium-substituted tin perovskite solar cells, ACS Mater. Lett., 4(2022), No. 9, p. 1855. doi: 10.1021/acsmaterialslett.2c00275
|
[37] |
F.D. Gu, C.B. Wang, Z.R. Zhao, et al., Tin(II) acetylacetonate as a new type of tin compensator additive for tin-based perovskite solar cells, ACS Appl. Mater. Interfaces, 13(2021), No. 37, p. 44157. doi: 10.1021/acsami.1c08208
|
[38] |
Z. Zhang, M.A. Kamarudin, A.K. Baranwal, et al., Sequential passivation for lead-free tin perovskite solar cells with high efficiency, Angew. Chem. Int. Ed., 61(2022), No. 42, art. No. 202210101. doi: 10.1002/anie.202210101
|
[39] |
S.R. Wang, L. Yan, W.K. Zhu, et al., Suppressing the formation of tin vacancy yields efficient lead-free perovskite solar cells, Nano Energy, 99(2022), art. No. 107416. doi: 10.1016/j.nanoen.2022.107416
|
[40] |
H.J. Yan, B.W. Wang, X.F. Yan, et al., Efficient passivation of surface defects by lewis base in lead-free tin-based perovskite solar cells, Mater. Today Energy, 27(2022), art. No. 101038. doi: 10.1016/j.mtener.2022.101038
|
[41] |
Z. Zhang, L. Wang, A.K. Baranwal, et al., Enhanced efficiency and stability in Sn-based perovskite solar cells by trimethylsilyl halide surface passivation, J. Energy Chem., 71(2022), p. 604. doi: 10.1016/j.jechem.2022.03.028
|
[42] |
E. Jokar, C.H. Chien, A. Fathi, M. Rameez, Y.H. Chang, and E.W.G. Diau, Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells, Energy Environ. Sci., 11(2018), No. 9, p. 2353. doi: 10.1039/C8EE00956B
|
[43] |
C. Liu, J. Tu, X.T. Hu, et al., Enhanced hole transportation for inverted tin-based perovskite solar cells with high performance and stability, Adv. Funct. Mater., 29(2019), No. 18, art. No. 1808059. doi: 10.1002/adfm.201808059
|
[44] |
E. Jokar, H.S. Chuang, C.H. Kuan, et al., Slow passivation and inverted hysteresis for hybrid tin perovskite solar cells attaining 13.5% via sequential deposition, J. Phys. Chem. Lett., 12(2021), No. 41, p. 10106. doi: 10.1021/acs.jpclett.1c03107
|
[45] |
B.H. Chang, B. Li., Z.X. Wang, et al., Efficient bulk defect suppression strategy in FASnI3 perovskite for photovoltaic performance enhancement, Adv. Funct. Mater., 32(2022), No. 12, art. No. 2107710. doi: 10.1002/adfm.202107710
|
[46] |
P.J. Zhao, B.J. Kim, and H.S. Jung, Passivation in perovskite solar cells: A review, Mater. Today Energy, 7(2018), p. 267. doi: 10.1016/j.mtener.2018.01.004
|
[47] |
Q.D. Tai, X.Y. Guo, G.Q. Tang, et al., Antioxidant grain passivation for air-stable tin-based perovskite solar cells, Angew. Chem. Int. Ed., 58(2019), No. 3, p. 806. doi: 10.1002/anie.201811539
|
[48] |
J.Y. Kim, J.W. Lee, H.S. Jung, H. Shin, and N.G. Park, High-efficiency perovskite solar cells, Chem. Rev., 120(2020), No. 15, p. 7867. doi: 10.1021/acs.chemrev.0c00107
|
[49] |
Y. Zhang, Y. Li, L. Zhang, et al., Propylammonium chloride additive for efficient and stable FAPbI3 perovskite solar cells, Adv. Energy Mater., 11(2021), No. 47, art. No. 2102538. doi: 10.1002/aenm.202102538
|
[50] |
D.S. Yao, C.M. Zhang, S.L. Zhang, et al., 2D–3D mixed organic–inorganic perovskite layers for solar cells with enhanced efficiency and stability induced by n-propylammonium iodide additives, ACS Appl. Mater. Interfaces, 11(2019), No. 33, p. 29753. doi: 10.1021/acsami.9b06305
|
[51] |
D.D. Wu, P.C. Jia, W.T. Bi, et al., Enhanced performance of tin halide perovskite solar cells by addition of hydrazine monohydrobromide, Org. Electron., 82(2020), art. No. 105728. doi: 10.1016/j.orgel.2020.105728
|
[52] |
P.C. Jia, L. Qin, D. Zhao, et al., The trapped charges at grain boundaries in perovskite solar cells, Adv. Funct. Mater., 31(2021), No. 49, art. No. 2107125. doi: 10.1002/adfm.202107125
|
[53] |
C.X. Ran, W.Y. Gao, J.R. Li, et al., Conjugated organic cations enable efficient self-healing FASnI3 solar cells, Joule, 3(2019), No. 12, p. 3072. doi: 10.1016/j.joule.2019.08.023
|