Cite this article as: |
Xinyuan Zhang, Chenkang Xia, Weihai Liu, Mingyuan Hao, Yang Miao, and Feng Gao, Microwave absorption and thermal properties of coral-like SiC aerogel composites prepared by water glass as a silicon source, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1375-1387. https://doi.org/10.1007/s12613-023-2605-x |
Yang Miao E-mail: miaoyang198781@163.com
[1] |
S. Kumar, A. Kumar, K. Sampath, et al., Fabrication and erosion studies of C–SiC composite Jet Vanes in solid rocket motor exhaust, J. Eur. Ceram. Soc., 31(2011), No. 13, p. 2425. doi: 10.1016/j.jeurceramsoc.2011.06.007
|
[2] |
G.B. Sun, B.X. Dong, M.H. Cao, B.Q. Wei, and C.W. Hu, Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption, Chem. Mater., 23(2011), No. 6, p. 1587. doi: 10.1021/cm103441u
|
[3] |
W.M. Zhu, L. Wang, R. Zhao, J.W. Ren, G.Z. Lu, and Y.Q. Wang, Electromagnetic and microwave-absorbing properties of magnetic nickel ferrite nanocrystals, Nanoscale, 3(2011), No. 7, p. 2862. doi: 10.1039/c1nr10274e
|
[4] |
D. Micheli, A. Vricella, R. Pastore, and M. Marchetti, Synthesis and electromagnetic characterization of frequency selective radar absorbing materials using carbon nanopowders, Carbon, 77(2014), p. 756. doi: 10.1016/j.carbon.2014.05.080
|
[5] |
A. Ansari and M.J. Akhtar, Co/graphite based light weight microwave absorber for electromagnetic shielding and stealth applications, Mater. Res. Express, 4(2017), No. 1, art. No. 016304. doi: 10.1088/2053-1591/aa570c
|
[6] |
B. Quan, X.H. Liang, G.B. Ji, et al., Dielectric polarization in electromagnetic wave absorption: Review and perspective, J. Alloys Compd., 728(2017), p. 1065. doi: 10.1016/j.jallcom.2017.09.082
|
[7] |
C. Wang, V. Murugadoss, J. Kong, et al., Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding, Carbon, 140(2018), p. 696. doi: 10.1016/j.carbon.2018.09.006
|
[8] |
M. Green and X.B. Chen, Recent progress of nanomaterials for microwave absorption, J. Materiomics, 5(2019), No. 4, p. 503. doi: 10.1016/j.jmat.2019.07.003
|
[9] |
B. Zhao, X.Q. Guo, W.Y. Zhao, et al., Yolk–shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties, ACS Appl. Mater. Interfaces, 8(2016), No. 42, p. 28917. doi: 10.1021/acsami.6b10886
|
[10] |
B. Zhao, J.W. Liu, X.Q. Guo, et al., Hierarchical porous Ni@boehmite/nickel aluminum oxide flakes with enhanced microwave absorption ability, Phys. Chem. Chem. Phys., 19(2017), No. 13, p. 9128. doi: 10.1039/C7CP00629B
|
[11] |
B. Zhao, X. Zhang, J.S. Deng, et al., A novel sponge-like 2D Ni/derivative heterostructure to strengthen microwave absorption performance, Phys. Chem. Chem. Phys., 20(2018), No. 45, p. 28623. doi: 10.1039/C8CP06047A
|
[12] |
Y. Wang, X. Gao, Y.Q. Fu, et al., Enhanced microwave absorption performances of polyaniline/graphene aerogel by covalent bonding, Composites Part B, 169(2019), p. 221. doi: 10.1016/j.compositesb.2019.04.008
|
[13] |
L.X. Chen, J. Zhao, L. Wang, et al., In-situ pyrolyzed polymethylsilsesquioxane multi-walled carbon nanotubes derived ceramic nanocomposites for electromagnetic wave absorption, Ceram. Int., 45(2019), No. 9, p. 11756. doi: 10.1016/j.ceramint.2019.03.052
|
[14] |
Y. Wang, X. Gao, C.H. Lin, L.Y. Shi, X.H. Li, and G.L. Wu, Metal organic frameworks-derived Fe–Co nanoporous carbon/graphene composite as a high-performance electromagnetic wave absorber, J. Alloys Compd., 785(2019), p. 765. doi: 10.1016/j.jallcom.2019.01.271
|
[15] |
H.X. Zhang, B.B. Wang, A.L. Feng, et al., Mesoporous carbon hollow microspheres with tunable pore size and shell thickness as efficient electromagnetic wave absorbers, Composites Part B, 167(2019), p. 690. doi: 10.1016/j.compositesb.2019.03.055
|
[16] |
Y. Kong, X.D. Shen, S. Cui, and M.H. Fan, Preparation of monolith SiC aerogel with high surface area and large pore volume and the structural evolution during the preparation, Ceram. Int., 40(2014), No. 6, p. 8265. doi: 10.1016/j.ceramint.2014.01.025
|
[17] |
Z.M. An, C.S. Ye, R.B. Zhang, and Q. Qu, Multifunctional C/SiO2/SiC-based aerogels and composites for thermal insulators and electromagnetic interference shielding, J. Sol-Gel Sci. Technol., 89(2019), No. 3, p. 623. doi: 10.1007/s10971-019-04916-5
|
[18] |
W. Wang, Y.F. Zhao, W.Q. Yan, S. Cui, X.D. Wu, and H. Suo, Preparation of the novel B4C–SiC composite aerogel with high compressive strength and low thermal conductivity, J. Porous Mater., 28(2021), No. 3, p. 703. doi: 10.1007/s10934-020-01024-6
|
[19] |
Y. Jiang, Y. Chen, Y.J. Liu, and G.X. Sui, Lightweight spongy bone-like graphene@SiC aerogel composites for high-performance microwave absorption, Chem. Eng. J., 337(2018), p. 522. doi: 10.1016/j.cej.2017.12.131
|
[20] |
Y. Kong, Y. Zhong, X.D. Shen, et al., Facile synthesis of resorcinol–formaldehyde/silica composite aerogels and their transformation to monolithic carbon/silica and carbon/silicon carbide composite aerogels, J. Non-Cryst. Solids, 358(2012), No. 23, p. 3150. doi: 10.1016/j.jnoncrysol.2012.08.029
|
[21] |
L.Y. Cao, Y.S. Liu, Y.H. Zhang, et al., Thermal conductivity and bending strength of SiC composites reinforced by pitch-based carbon fibers, J. Adv. Ceram., 11(2022), No. 2, p. 247. doi: 10.1007/s40145-021-0527-5
|
[22] |
M. Norouzi, D. Elhamifar, and R. Mirbagheri, Phenylene-based periodic mesoporous organosilica supported melamine: An efficient, durable and reusable organocatalyst, Microporous Mesoporous Mater., 278(2019), p. 251. doi: 10.1016/j.micromeso.2018.11.040
|
[23] |
L. Lei, Z.B. Fu, Y. Yi, X.L. Huang, H. Tu, and C.Y. Wang, Preparation and characterization of RF aerogel on UV irradiation method, J. Sol-Gel Sci. Technol., 72(2014), No. 3, p. 553. doi: 10.1007/s10971-014-3472-8
|
[24] |
Y. Chen, L. Yang, S.H. Xu, et al., Ultralight aerogel based on molecular-modified poly(m-phenylenediamine) crosslinking with polyvinyl alcohol/graphene oxide for flow adsorption, RSC Adv., 9(2019), No. 40, p. 22950. doi: 10.1039/C9RA04207E
|
[25] |
Y. Huang, X.Y. Peng, X.D. Liu, C. Chen, and X.P. Han, Development of SiC fiber through heat treatment of silica aerogel by in situ curing, Mater. Lett., 283(2021), art. No. 128797. doi: 10.1016/j.matlet.2020.128797
|
[26] |
M.H. Tai, B.C. Mohan, Z.Y. Yao, and C.H. Wang, Superhydrophobic leached carbon black/poly(vinyl) alcohol aerogel for selective removal of oils and organic compounds from water, Chemosphere, 286(2022), art. No. 131520. doi: 10.1016/j.chemosphere.2021.131520
|
[27] |
J. Wei, X.T. Li, Y. Wang, B. Chen, M.J. Zhang, and C.M. Qin, Photoluminescence property of inexpensive flexible SiC nanowires membrane by electrospinning and carbothermal reduction, J. Am. Ceram. Soc., 103(2020), No. 11, p. 6187. doi: 10.1111/jace.17396
|
[28] |
B. Du, D.Y. Zhang, J.J. Qian, et al., Multifunctional carbon nanofiber–SiC nanowire aerogel films with superior microwave absorbing performance, Adv. Compos. Hybrid Mater., 4(2021), No. 4, p. 1281. doi: 10.1007/s42114-021-00286-1
|
[29] |
K. Chen, Z.H. Bao, A. Du, et al., Synthesis of resorcinol–formaldehyde/silica composite aerogels and their low-temperature conversion to mesoporous silicon carbide, Microporous Mesoporous Mater., 149(2012), No. 1, p. 16. doi: 10.1016/j.micromeso.2011.09.008
|
[30] |
A. Zirakjou and M. Kokabi, SiC/C aerogels from biphenylene-bridged polysilsesquioxane/clay mineral nanocomposite aerogels, Ceram. Int., 46(2020), No. 2, p. 2194. doi: 10.1016/j.ceramint.2019.09.204
|
[31] |
X.T. Li, X.H. Chen, and H.H. Song, Preparation of silicon carbide nanowires via a rapid heating process, Mater. Sci. Eng. B, 176(2011), No. 1, p. 87. doi: 10.1016/j.mseb.2010.09.007
|
[32] |
C.Y. Li, Z. Xu, H.B. Ouyang, L.Y. Chang, J.F. Huang, and Y.J. Liu, Preparation, adsorption properties and microwave-assisted regeneration of porous C/SiC ceramics with a hierarchical structure, Appl. Compos. Mater., 27(2020), No. 3, p. 131. doi: 10.1007/s10443-020-09801-x
|
[33] |
G.Q. An, H.L. Liu, H.Y. Li, Z. Chen, J. Li, and Y.J. Li, SiBCN ceramic aerogel/graphene composites prepared via sol–gel infiltration process and polymer-derived ceramics (PDCs) route, Ceram. Int., 46(2020), No. 6, p. 7001. doi: 10.1016/j.ceramint.2019.10.267
|
[34] |
J.Z. Feng, J. Feng, and C.R. Zhang, Shrinkage and pore structure in preparation of carbon aerogels, J. Sol-Gel Sci. Technol., 59(2011), No. 2, p. 371. doi: 10.1007/s10971-011-2514-8
|
[35] |
K.J. Lee, Y.G. Kang, Y.H. Kim, S.W. Baek, and H. Hwang, Synthesis of silicon carbide powders from methyl-modified silica aerogels, Appl. Sci., 10(2020), No. 18, art. No. 6161. doi: 10.3390/app10186161
|
[36] |
L.J. Wang, S.Y. Zhao, and M. Yang, Structural characteristics and thermal conductivity of ambient pressure dried silica aerogels with one-step solvent exchange/surface modification, Mater. Chem. Phys., 113(2009), No. 1, p. 485. doi: 10.1016/j.matchemphys.2008.07.124
|
[37] |
W. Zheng, X.B. He, M. Wu, X.H. Qu, R.J. Liu, and D.D. Guan, Graphite addition for SiC formation in diamond/SiC/Si composite preparation, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1166. doi: 10.1007/s12613-019-1808-7
|
[38] |
S.N. Zhang, H.Q. Pang, T.H. Fan, Q. Ye, Q.L. Cai, and X. Wu, Thermal insulation performance of SiC-doped silica aerogels under large temperature and air pressure differences, Gels, 8(2022), No. 5, art. No. 320. doi: 10.3390/gels8050320
|
[39] |
X.L. Ye, Z.F. Chen, J.X. Zhang, C. Wu, and J.F. Xiang, SiC network reinforced SiO2 aerogel with improved compressive strength and preeminent microwave absorption at elevated temperatures, Ceram. Int., 47(2021), No. 22, p. 31497. doi: 10.1016/j.ceramint.2021.08.027
|
[40] |
Z.X. Cai, L. Su, H.J. Wang, et al., Alternating multilayered Si3N4/SiC aerogels for broadband and high-temperature electromagnetic wave absorption up to 1000°C, ACS Appl. Mater. Interfaces, 13(2021), No. 14, p. 16704. doi: 10.1021/acsami.1c02906
|
[41] |
X.L. Ye, Z.F. Chen, S.F. Ai, et al., Novel three-dimensional SiC/melamine-derived carbon foam-reinforced SiO2 aerogel composite with low dielectric loss and high impedance matching ratio, ACS Sustainable Chem. Eng., 7(2019), No. 2, p. 2774. doi: 10.1021/acssuschemeng.8b05966
|