Peng Li, Meifeng Cai, Mostafa Gorjian, Fenhua Ren, Xun Xi,  and Peitao Wang, Interaction between in situ stress states and tectonic faults: A comment, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1227-1243. https://doi.org/10.1007/s12613-023-2607-8
Cite this article as:
Peng Li, Meifeng Cai, Mostafa Gorjian, Fenhua Ren, Xun Xi,  and Peitao Wang, Interaction between in situ stress states and tectonic faults: A comment, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1227-1243. https://doi.org/10.1007/s12613-023-2607-8
Invited Review

Interaction between in situ stress states and tectonic faults: A comment

+ Author Affiliations
  • Corresponding authors:

    Xun Xi    E-mail: xixun@ustb.edu.cn

    Peitao Wang    E-mail: wangpeitao@ustb.edu.cn

  • Received: 18 November 2022Revised: 2 February 2023Accepted: 4 February 2023Available online: 10 February 2023
  • Understanding the in situ stress state is crucial in many engineering problems and earth science research. The present article presents new insights into the interaction mechanism between the stress state and faults. In situ stresses can be influenced by various factors, one of the most important being the existence of faults. A fault could significantly affect the value and direction of the stress components. Reorientation and magnitude changes in stresses exist adjacent to faults and stress jumps/discontinuities across the fault. By contrast, the change in the stress state may lead to the transformation of faulting type and potential fault reactivation. Qualitative fault reactivation assessment using characteristic parameters under the current stress environment provides a method to assess the slip tendency of faults. The correlation between in situ stresses and fault properties enhances the ability to predict the fault slip tendency via stress measurements, which can be used to further refine the assessment of the fault reactivation risk. In the future, stress measurements at greater depths and long-term continuous real-time stress monitoring near/on key parts of faults will be essential. In addition, much attention needs to be paid to distinguishing the genetic mechanisms of abnormal stress states and the type and scale of stress variations and exploring the mechanisms of pre-faulting anomaly and fault reactivation.
  • loading
  • [1]
    C. Jaeger, Rock Mechanics and Engineering, Cambridge University Press, Cambridge, 1979.
    [2]
    P. Li, M.F. Cai, Q.F. Guo, and S.J. Miao, Characteristics and implications of stress state in a gold mine in Ludong area, China, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1363. doi: 10.1007/s12613-018-1690-8
    [3]
    P. Li and M.F. Cai, Distribution law of in situ stress field and regional stress field assessments in the Jiaodong Peninsula, China, J. Asian Earth Sci., 166(2018), p. 66. doi: 10.1016/j.jseaes.2018.07.021
    [4]
    J.A. Hudson, Design methodology for the safety of underground rock engineering, J. Rock Mech. Geotech. Eng., 4(2012), No. 3, p. 205. doi: 10.3724/SP.J.1235.2012.00205
    [5]
    O. Stephansson and A. Zang, ISRM suggested methods for rock stress estimation—Part 5: Establishing a model for the in situ stress at a given site, Rock Mech. Rock Eng., 45(2012), No. 6, p. 955. doi: 10.1007/s00603-012-0270-x
    [6]
    P. Li, M.F. Cai, Q.F. Guo, and S.J. Miao, In situ stress state of the northwest region of the Jiaodong Peninsula, China from overcoring stress measurements in three gold mines, Rock Mech. Rock Eng., 52(2019), No. 11, p. 4497. doi: 10.1007/s00603-019-01827-3
    [7]
    P. Li, F.H. Ren, M.F. Cai, Q.F. Guo, and S.J. Miao, Present-day stress state and fault stability analysis in the capital area of China constrained by in situ stress measurements and focal mechanism solutions, J. Asian Earth Sci., 185(2019), art. No. 104007. doi: 10.1016/j.jseaes.2019.104007
    [8]
    C. Chang, J.B. Lee, and T.S. Kang, Interaction between regional stress state and faults: Complementary analysis of borehole in situ stress and earthquake focal mechanism in southeastern Korea, Tectonophysics, 485(2010), No. 1-4, p. 164. doi: 10.1016/j.tecto.2009.12.012
    [9]
    P. Li, M. Cai, Q. Guo, F. Ren, and S. Miao, Current stress field and its relationship to tectonism in a coal mining district, central China, for underground coal energy exploration, Energy Rep., 8(2022), p. 5313. doi: 10.1016/j.egyr.2022.04.008
    [10]
    S. Su and O. Stephansson, Effect of a fault on in situ stresses studied by the distinct element method, Int. J. Rock Mech. Min. Sci., 36(1999), No. 8, p. 1051. doi: 10.1016/S1365-1609(99)00119-7
    [11]
    N.G. Tan, R.S. Yang, and Z.Y. Tan, Influence of complicated faults on the differentiation and accumulation of in-situ stress in deep rock mass, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 791. doi: 10.1007/s12613-022-2528-y
    [12]
    X.H. Qin, Q.C. Chen, M.L. Wu, C.X. Tan, C.J. Feng, and W. Meng, In-situ stress measurements along the Beichuan-Yingxiu fault after the Wenchuan earthquake, Eng. Geol., 194(2015), p. 114. doi: https://doi.org/10.1016/j.enggeo.2015.04.029
    [13]
    L.R. Alejano, U. Castro-Filgueira, A.M. Ferrero, M. Migliazza, and F. Vagnon, In situ stress measurement near faults and interpretation by means of discrete element modelling, Acta Geodyn. Geomater., 14(2017), No. 2, p. 181.
    [14]
    B. Amadei and O. Stephansson, Rock Stress and Its Measurement, Springer Science & Business Media, Berlin, 1997.
    [15]
    W.R. Lin, M. Conin, J.C. Moore, et al., Stress state in the largest displacement area of the 2011 Tohoku-Oki earthquake, Science, 339(2013), No. 6120, p. 687. doi: 10.1126/science.1229379
    [16]
    S. Sengupta, Influence of Geological Structures on In-situ Stresses [Dissertation], Netaji Subhash University of Technology, Delhi, 1998, p. 192.
    [17]
    H.Y. Shi, F.Q. Huang, Z.K. Ma, Y.J. Wang, J.C. Feng, and X. Gao, Mechanical mechanism of fault dislocation based on in situ stress state, Front. Earth Sci., 8(2020), art. No. 52. doi: 10.3389/feart.2020.00052
    [18]
    C. Feng, P. Zhang, X. Qin, W. Meng, C. Tan, and Q. Chen, Near-surface stress measurements in the Longmenshan fault belt after the 2008 Wenchuan Ms8.0 earthquake, Int. J. Rock Mech. Min. Sci., 77(2015), p. 358. doi: 10.1016/j.ijrmms.2015.03.017
    [19]
    C. Wang, C. Song, Q. Guo, J. Mao, and Y. Zhang, New insights into stress changes before and after the Wenchuan Earthquake using hydraulic fracturing measurements, Eng. Geol., 194(2015), p. 98. doi: 10.1016/j.enggeo.2015.05.016
    [20]
    S. Miao, Y. Li, W. Tan, and F. Ren, Relation between the in situ stress field and geological tectonics of a gold mine area in Jiaodong Peninsula, China, Int. J. Rock Mech. Min. Sci., 51(2012), p. 76. doi: 10.1016/j.ijrmms.2012.01.007
    [21]
    O. Heidbach, M. Rajabi, X.F. Cui, et al., The World Stress Map database release 2016: Crustal stress pattern across scales, Tectonophysics, 744(2018), p. 484. doi: 10.1016/j.tecto.2018.07.007
    [22]
    P. Li and M.F. Cai, Insights into seismicity from the perspective of the crustal stress field: A comment, Nat. Hazards, 111(2022), No. 2, p. 1153. doi: 10.1007/s11069-021-05124-7
    [23]
    P. Li and M.F. Cai, Assessing the role of absolute stress measurement and relative stress real-time monitoring for earthquake research, Arab. J. Geosci., 15(2022), No. 9, art. No. 831. doi: 10.1007/s12517-022-10135-0
    [24]
    K. von Terzaghi, Die Berechnung der Durchlassigkeitsziffer des Tones aus dem Verlauf der Hydrodynamichen Spannungs. erscheinungen, Sitzungsber. Akad. Wiss. Math. Naturwiss. Kl. Abt. 2A, 132(1923), p. 125.
    [25]
    J.L. Gao, J.M. Ding, G.P. Liang, and Q.L. Guo, Hydraulic fracturing stress measurements at the longyangxia water-power station, Chin. J. Rock Mech. Eng., 9(1990), No. 2, p. 134.
    [26]
    M.D. Zoback, H. Tsukahara, and S. Hickman, Stress measurements at depth in the vicinity of the San Andreas Fault: Implications for the magnitude of shear stress at depth, J. Geophys. Res. Solid Earth, 85(1980), No. B11, p. 6157. doi: 10.1029/JB085iB11p06157
    [27]
    F.Q. Li, S.Z. Sun, and L.Q. Li, In-situ stress measurements in North China and Tancheng–Lujiang fault zone, Chin. J. Rock Mech. Eng., 1(1982), No. 1, p. 73.
    [28]
    J.M. Ding and G.P. Liang, On stress field in epicentral areas of 1976 Tangshan earthquake and 1679 Sanhe–Pinggu earthquake, Acta. Seismol. Sin., 6(1984), No. 2, p. 195.
    [29]
    F.Q. Li and G.X. Liu, Stress measurement, stress state of upper crust and earthquake research, Earthq. Res. China, 2(1986), No. 1, p. 50.
    [30]
    H.P. Kang, Z.G. Wu, F.Q. Gao, and W.J. Ju, Effect of geological structures on in situ stress distribution in underground coal mines, Chin. J. Rock Mech. Eng., 31(2012), No. S1, p. 2674.
    [31]
    C.H. Zhou, J.M. Yin, J.Y. Luo, and G.Q. Xiao, Law of geo-stress distribution in the vicinity of fault zone, J. Yangtze River Sci. Res. Inst., 29(2012), No. 7, p. 57.
    [32]
    O. Stephansson, Rock stress in the Fennoscandian Shield, [in] Rock Testing and Site Characterization, Pergamon, 1993, p. 445.
    [33]
    H. Ito, Stress measurements by the hydraulic fracturing in the 1995 Hyogoken-nanbu earthquake source region, [in] International Symposium on Rock Stress, Kumamoto, 1997, p. 351.
    [34]
    J.J. Martı́nez-Dı́az, Stress field variation related to fault interaction in a reverse oblique-slip fault: The Alhama de Murcia fault, Betic Cordillera, Spain, Tectonophysics, 356(2002), No. 4, p. 291. doi: 10.1016/S0040-1951(02)00400-6
    [35]
    M. Alberti, Spatial structures in earthquakes and faults: Quantifying similarity in simulated stress fields and natural data sets, J. Struct. Geol., 28(2006), No. 6, p. 998. doi: 10.1016/j.jsg.2006.03.017
    [36]
    W. Lin, E.C. Yeh, J.H. Hung, B. Haimson, and T. Hirono, Localized rotation of principal stress around faults and fractures determined from borehole breakouts in hole B of the Taiwan Chelungpu-fault Drilling Project (TCDP), Tectonophysics, 482(2010), No. 1-4, p. 82. doi: 10.1016/j.tecto.2009.06.020
    [37]
    Z.F. Tian and H.D. Chen, Prediction of the failure phenomenon in the shallow part of the Earth’s crust by crustal stress measurement, [in] Bulletin of the Institute of Crustal Dynamics, Seismological Press, Beijing, 1995, p. 1.
    [38]
    J.A. Hudson, and C.M. Cooling, In situ rock stresses and their measurement in the U.K.—Part I. The current state of knowledge, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 25(1988), No. 6, p. 363. doi: 10.1016/0148-9062(88)90976-X
    [39]
    J.S. Bell, Petro Geoscience 2. In situ stresses in sedimentary rocks (part 2): Applications of stress measurements, Geosci. Can., 23(1996), No. 3, p. 135.
    [40]
    M. Rajabi, M. Tingay, and O. Heidbach, The present-day stress field of New South Wales, Australia, Aust. J. Earth Sci., 63(2016), No. 1, p. 1. doi: 10.1080/08120099.2016.1135821
    [41]
    J.A. Hudson, F.H. Cornet, and R. Christiansson, ISRM Suggested Methods for rock stress estimation—Part 1: Strategy for rock stress estimation, Int. J. Rock Mech. Min. Sci., 40(2003), No. 7-8, p. 991. doi: 10.1016/j.ijrmms.2003.07.011
    [42]
    D.R. Faulkner, T.M. Mitchell, D. Healy, and M.J. Heap, Slip on ‘weak’ faults by the rotation of regional stress in the fracture damage zone, Nature, 444(2006), No. 7121, p. 922. doi: 10.1038/nature05353
    [43]
    M.J. Heap, D.R. Faulkner, P.G. Meredith, and S. Vinciguerra, Elastic moduli evolution and accompanying stress changes with increasing crack damage: Implications for stress changes around fault zones and volcanoes during deformation, Geophys. J. Int., 183(2010), No. 1, p. 225. doi: 10.1111/j.1365-246X.2010.04726.x
    [44]
    G. Shamir and M.D. Zoback, Stress orientation profile to 3.5 km depth near the San Andreas Fault at Cajon Pass, California, J. Geophys. Res. Solid Earth, 97(1992), No. B4, art. No. 5059. doi: 10.1029/91JB02959
    [45]
    M.L. Sbar, T. Engelder, R. Plumb, and S. Marshak, Stress pattern near the San Andreas Fault, Palmdale, California, from near-surface in situ measurements, J. Geophys. Res. Solid Earth, 84(1979), No. B1, p. 156. doi: 10.1029/JB084iB01p00156
    [46]
    Y. Sun, Z.J. Wang, S.Z. Shen, et al., Present-day stress state of the Meiling arc-shaped fault in Beijing, Sci. China. Ser. B, 1983, No.11, p. 1021.
    [47]
    M.D. Zoback and J.H. Healy, In situ stress measurements to 3.5 km depth in the Cajon Pass Scientific Research Borehole: Implications for the mechanics of crustal faulting, J. Geophys. Res. Solid Earth, 97(1992), No. B4, art. No. 5039. doi: 10.1029/91JB02175
    [48]
    C.A. Barton and M.D. Zoback, Stress perturbations associated with active faults penetrated by boreholes: Possible evidence for near-complete stress drop and a new technique for stress magnitude measurement, J. Geophys. Res. Solid Earth, 99(1994), No. B5, p. 9373. doi: 10.1029/93JB03359
    [49]
    Y. Obara, H.K. Jang, K. Sugawara, and K. Sakaguchi, Measurement of stress distribution around fault and considerations, [in] Proc. 2nd Int. Conf. on the Mechanics of Jointed and Faulted Rock, Vienna, 1995, p. 495.
    [50]
    M. Brudy, M.D. Zoback, K. Fuchs, F. Rummel, and J. Baumgärtner, Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes: Implications for crustal strength, J. Geophys. Res. Solid Earth, 102(1997), No. B8, p. 18453. doi: 10.1029/96JB02942
    [51]
    Z.Q. Sun and J.H. Zhang, Variation of in situ stresses before and after occurrence of geologic fault structure, Chin. J. Rock Mech. Eng., 23(2004), No. 23, p. 3964.
    [52]
    S. Hickman and M. Zoback, Stress orientations and magnitudes in the SAFOD pilot hole, Geophys. Res. Lett., 31(2004), No. 15, art. No. L15S12.
    [53]
    G. Shamir, M.D. Zoback, and C.A. Barton, In situ stress orientation near the San Andreas Fault: Preliminary results to 2.1 km depth from the Cajon Pass Scientific Drillhole, Geophys. Res. Lett., 15(1988), No. 9, p. 989. doi: 10.1029/GL015i009p00989
    [54]
    W. Lin, E.C. Yeh, H. Ito, et al., Current stress state and principal stress rotations in the vicinity of the Chelungpu fault induced by the 1999 Chi-Chi, Taiwan, earthquake, Geophys. Res. Lett., 34(2007), No. 16, art. No. L1307.
    [55]
    H. Peng, X.M. Ma, and J.J. Jiang, Stability and stress measurement near the Qingchuan fault in the northern Longmen Mountains, J. Geomech., 15(2009), No. 2, p. 114.
    [56]
    H. Li, F.R. Xie, H.Z. Wang, Y.K. Dong, and J.J. Yu, Characteristics of in-situ stress measurements near the fault and fault activity in Urumqi City, Chin. J. Geophys., 55(2012), No. 11, p. 3690.
    [57]
    J. Cui, W. Lin, L. Wang, et al., Determination of three-dimensional in situ stresses by anelastic strain recovery in Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1), Tectonophysics, 619-620(2014), p. 123. doi: 10.1016/j.tecto.2013.09.013
    [58]
    Z.Y. Tan, Z.Y. Xia, Y. Ding, R. Againglo, H.X. Liu, and P.J. Yue, Differentiation characteristics of in situ stress in deep rock, Chin. J. Rock Mech. Eng., 38(2019), No. S2, p. 3330.
    [59]
    P. Li, M.F. Cai, S.J. Miao, and Q.F. Guo, New insights into the current stress field around the Yishu fault zone, Eastern China, Rock Mech. Rock Eng., 52(2019), No. 10, p. 4133. doi: 10.1007/s00603-019-01792-x
    [60]
    P. Li, Q.F. Guo, H.T. Liu, and X.Q. Jiang, Characteristics of current in situ stress field and stress accumulation in Shandong region, Chin. J. Rock Mech. Eng., 36(2017), No. 9, p. 2220.
    [61]
    S.R. Su, The Effect of Fractures on Rock Stresses and Its Significance in Geological Engineering [Dissertation], Chengdu University of Technology, Chengdu, 2001.
    [62]
    P.A. Reasenberg and R.W. Simpson, Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake, Science, 255(1992), No. 5052, p. 1687. doi: 10.1126/science.255.5052.1687
    [63]
    R.S. Stein, The role of stress transfer in earthquake occurrence, Nature, 402(1999), No. 6762, p. 605. doi: 10.1038/45144
    [64]
    K.F. Ma, C.H. Chan, and R.S. Stein, Response of seismicity to Coulomb stress triggers and shadows of the 1999 Mw = 7.6 Chi-Chi, Taiwan, earthquake, J. Geophys. Res. Solid Earth, 110(2005), No. B5, art. No. B05S19.
    [65]
    E.M. Anderson, The Dynamics of Faulting and Dyke Formation with Application to Britainby, Oliver and Boyd, Edinburgh, 1951.
    [66]
    J.J. Zhang, In situ stress regimes with lithology-dependent and depletion effects, Appl. Pet. Geomech., 21(2019), p. 163.
    [67]
    R.S. Stein, A.A. Barka, and J.H. Dieterich, Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering, Geophys. J. Int., 128(1997), No. 3, p. 594. doi: 10.1111/j.1365-246X.1997.tb05321.x
    [68]
    E. Papadimitriou, X.Z. Wen, V. Karakostas, and X.S. Jin, Earthquake triggering along the Xianshuihe fault zone of western Sichuan, China, Pure Appl. Geophys., 161(2004), No. 8, p. 1683. doi: 10.1007/s00024-003-2471-4
    [69]
    C.T. Liao, C.S. Zhang, M.L. Wu, Y.S. Ma, and M.Y. Ou, Stress change near the Kunlun fault before and after the Ms 8.1 Kunlun earthquake, Geophys. Res. Lett., 30(2003), No. 20, p. 2027.
    [70]
    Z.H. Wu, Q.C. Chen, P.J. Barosh, H. Peng, and D.G. Hu, Stress rise precursor to earthquakes in the Tibetan Plateau, Nat. Sci., 5(2013), No. 8, p. 46.
    [71]
    H. Peng, X.M. Ma, and J.J. Jiang, Analysis of the volume strain data from the Shandan in situ stress monitoring station, J. Geomech., 14(2008), No. 2, p. 97.
    [72]
    M. Wu, C. Zhang, and T. Fan, Stress state of the Baoxing segment of the southwestern Longmenshan Fault Zone before and after the Ms 7.0 Lushan earthquake, J. Asian Earth Sci., 121(2016), p. 9. doi: 10.1016/j.jseaes.2016.02.004
    [73]
    M.D. Zoback, R. Apel, J. Baumgärtner, et al., Upper-crustal strength inferred from stress measurements to 6 km depth in the KTB borehole, Nature, 365(1993), No. 6447, p. 633. doi: 10.1038/365633a0
    [74]
    W. Meng, Q. Chen, Z. Zhao, M. Wu, X. Qin, and C. Zhang, Characteristics and implications of the stress state in the Longmen Shan fault zone, eastern margin of the Tibetan Plateau, Tectonophysics, 656(2015), p. 1. doi: 10.1016/j.tecto.2015.04.010
    [75]
    J. Townend and M.D. Zoback, How faulting keeps the crust strong, Geology, 28(2000), No. 5, art. No. 399. doi: 10.1130/0091-7613(2000)28<399:HFKTCS>2.0.CO;2
    [76]
    R.H. Sibson and J.V. Rowland, Stress, fluid pressure and structural permeability in seismogenic crust, North Island, New Zealand, Geophys. J. Int., 154(2003), No. 2, p. 584. doi: 10.1046/j.1365-246X.2003.01965.x
    [77]
    C.J. Feng, P. Zhang, W.F. Sun, and C.X. Tan, The application of in situ stress measuring and real-time monitoring results to analyzing the fault activity hazard at Ming tombs borehole in Changping district, Beijing, Acta Geosci. Sin., 35(2014), No. 3, p. 345.
    [78]
    P. Li, Q.F. Guo, and M.F. Cai, Contemporary stress field in and around a gold mine area adjacent to the Bohai Sea, China, and its seismological implications, Bull. Eng. Geol. Environ., 81(2022), No. 3, art. No. 86. doi: 10.1007/s10064-022-02593-3
    [79]
    M.D. Zoback, Reservoir Geomechanics, Cambridge University Press, Cambridge, 2007.
    [80]
    J.S. Bell, Petro geoscience 1. In situ stresses in sedimentary rocks (part 1): Measurement techniques, Geosci. Can., 23(1996), No. 2, p. 85.
    [81]
    J.C. Jaeger, N.G.W. Cook, and R. Zimmerman, Fundamentals of Rock Mechanics, 4th Ed., Blackwell Publishing, New Jersey, 2007.
    [82]
    M. Manga, C.Y. Wang, and M. Shirzaei, Increased stream discharge after the 3 September 2016 Mw 5.8 Pawnee, Oklahoma earthquake, Geophys. Res. Lett., 43(2016), No. 22, p. 11. doi: https://doi.org/10.1002/2016GL071268
    [83]
    F. Grigoli, S. Cesca, A.P. Rinaldi, et al., The November 2017 Mw 5.5 Pohang earthquake: A possible case of induced seismicity in South Korea, Science, 360(2018), No. 6392, p. 1003. doi: 10.1126/science.aat2010
    [84]
    X.L. Lei, Z.W. Wang, and J.R. Su, The December 2018 ML 5.7 and January 2019 ML 5.3 earthquakes in South Sichuan Basin induced by shale gas hydraulic fracturing, Seismol. Res. Lett., 90(2019), No. 3, p. 1099. doi: 10.1785/0220190029
    [85]
    P. Segall, Earthquakes triggered by fluid extraction, Geology, 17(1989), No. 10, art. No. 942. doi: 10.1130/0091-7613(1989)017<0942:ETBFE>2.3.CO;2
    [86]
    J.J. Du, X.H. Qin, Q.L. Zeng, et al., Estimation of the present-day stress field using in situ stress measurements in the Alxa area, Inner Mongolia for China’s HLW disposal, Eng. Geol., 220(2017), p. 76. doi: 10.1016/j.enggeo.2017.01.020
    [87]
    D.B. Jamison and N.G. Cook, Note on measured values for the state of stress in the Earth’s crust, J. Geophys. Res. Solid Earth, 85(1980), No. B4, p. 1833. doi: 10.1029/JB085iB04p01833
    [88]
    J. Byerlee, Friction of rocks, Pure Appl. Geophys., 116(1978), No. 4, p. 615.
    [89]
    K.Z. Su, F.Q. Li, B.C. Zhang, and J.J. Wang, Comprehensive Study on Crustal Stress and Pore Water Pressure in Three Gorges Dam Area of Yangtze River, Seismological Press, Beijing, 1996.
    [90]
    M.D. Zoback, J. Townend, and B. Grollimund, Steady-state failure equilibrium and deformation of intraplate lithosphere, Int. Geol. Rev., 44(2002), No. 5, p. 383. doi: 10.2747/0020-6814.44.5.383
    [91]
    Y. Tanaka, K. Fujimori, and S. Otsuka, In-situ stress measurement and prediction of great earthquake, Earthquake, 50(1998), No. 2, p. 201.
    [92]
    C.H. Wang, C.K. Song, Q.L. Guo, Y.S. Zhang, and J.M. Ding, Stress build-up in the shallow crust before the Lushan earthquake based on the in situ stress measurements, Chin. J. Geophys., 57(2014), No. 3, p. 369. doi: 10.1002/cjg2.20110
    [93]
    J. Townend and M.D. Zoback, Regional tectonic stress near the San Andreas fault in central and southern California, Geophys. Res. Lett., 31(2004), No. 15, art. No. L15S11.
    [94]
    C.A. Morrow, L.Q. Shi, and J.D. Byerlee, Strain hardening and strength of clay-rich fault gouges, J. Geophys. Res. Solid Earth, 87(1982), No. B8, p. 6771. doi: 10.1029/JB087iB08p06771
    [95]
    J.B. Lee and C.D. Chang, Slip tendency of Quaternary faults in southeast Korea under current state of stress, Geosci. J., 13(2009), No. 4, p. 353. doi: 10.1007/s12303-009-0033-1
    [96]
    B.M. Carpenter, D.M. Saffer, and C. Marone, Frictional properties of the active San Andreas Fault at SAFOD: Implications for fault strength and slip behavior, J. Geophys. Res. Solid Earth, 120(2015), No. 7, p. 5273. doi: 10.1002/2015JB011963
    [97]
    X.H. Liu, Y.R. Fang, D.E. Cai, J.S. Hao, J.H. Li, and N.G. Geng, Frictional coefficients of fault gouges from six fault zones in China, North East Seismol. Res., 3(1987), No. 1, p. 23.
    [98]
    B.A. Verberne, C. He, and C.J. Spiers, Frictional properties of sedimentary rocks and natural fault gouge from the Longmen Shan fault zone, Sichuan, China, Bull. Seismol. Soc. Am., 100(2010), No. 5B, p. 2767. doi: 10.1785/0120090287
    [99]
    L. Zhang and C. He, Frictional properties of natural gouges from Longmenshan fault zone ruptured during the Wenchuan Mw7.9 earthquake, Tectonophysics, 594(2013), p. 149. doi: 10.1016/j.tecto.2013.03.030
    [100]
    C.H. Scholz, Earthquakes and friction laws, Nature, 391(1998), No. 6662, p. 37. doi: 10.1038/34097
    [101]
    D.M. Saffer and C. Marone, Comparison of smectite- and illite-rich gouge frictional properties: Application to the updip limit of the seismogenic zone along subduction megathrusts, Earth Planet. Sci. Lett., 215(2003), No. 1-2, p. 219. doi: 10.1016/S0012-821X(03)00424-2
    [102]
    C.H. Wang, L.F. Ding, F.Q. Li, C.K. Song, and J.Z. Mao, Characteristics of in situ stress measurement in northwest Sichuan Basin with timespan of 23 years and its crustal dynamics significance, Chin. J. Rock Mech. Eng., 31(2012), No. 11, p. 2171.
    [103]
    J. Liu, H. Yang, K. Xu, et al., Genetic mechanism of transfer zones in rift basins: Insights from geomechanical models, GSA Bull., 134(2022), No. 9-10, p. 2436. doi: 10.1130/B36151.1
    [104]
    J.S. Liu, L.F. Mei, W.L. Ding, K. Xu, H.M. Yang, and Y. Liu, Asymmetric propagation mechanism of hydraulic fracture networks in continental reservoirs, GSA Bull., 135(2023), No. 3-4, p. 678. doi: 10.1130/B36358.1
    [105]
    Y. Zhang and J. Zhang, Lithology-dependent minimum horizontal stress and in situ stress estimate, Tectonophysics, 703-704(2017), p. 1. doi: 10.1016/j.tecto.2017.03.002
    [106]
    S.H. Hickman, Stress in the lithosphere and the strength of active faults, Rev. Geophys., 29(1991), No. S2, p. 759. doi: 10.1002/rog.1991.29.s2.759
    [107]
    Y.D. Luo and J.P. Ampuero, Stability of faults with heterogeneous friction properties and effective normal stress, Tectonophysics, 733(2018), p. 257. doi: 10.1016/j.tecto.2017.11.006
    [108]
    M.D. Zoback and J. Townend, Implications of hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere, Tectonophysics, 336(2001), No. 1-4, p. 19. doi: 10.1016/S0040-1951(01)00091-9
    [109]
    H. Kanamori and E.E. Brodsky, The physics of earthquakes, Phys. Today, 54(2001), No. 6, p. 34. doi: 10.1063/1.1387590
    [110]
    M.J. Ikari, C. Marone, and D.M. Saffer, On the relation between fault strength and frictional stability, Geology, 39(2011), No. 1, p. 83. doi: 10.1130/G31416.1
    [111]
    E. Bonnet, O. Bour, N.E. Odling, et al., Scaling of fracture systems in geological media, Rev. Geophys., 39(2001), No. 3, p. 347. doi: 10.1029/1999RG000074
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Share Article

    Article Metrics

    Article Views(1257) PDF Downloads(149) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return