Zhenlin Xue, Haikuan Sun, Deqing Gan, Zepeng Yan, and Zhiyi Liu, Wall slip behavior of cemented paste backfill slurry during pipeline based on noncontact experimental detection, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1515-1523. https://doi.org/10.1007/s12613-023-2610-0
Cite this article as:
Zhenlin Xue, Haikuan Sun, Deqing Gan, Zepeng Yan, and Zhiyi Liu, Wall slip behavior of cemented paste backfill slurry during pipeline based on noncontact experimental detection, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1515-1523. https://doi.org/10.1007/s12613-023-2610-0
Research Article

Wall slip behavior of cemented paste backfill slurry during pipeline based on noncontact experimental detection

+ Author Affiliations
  • Corresponding author:

    Haikuan Sun    E-mail: Sun159060@163.com

  • Received: 16 July 2022Revised: 3 February 2023Accepted: 13 February 2023Available online: 15 February 2023
  • Wall slip is a microscopic phenomenon of cemented paste backfill (CPB) slurry near the pipe wall, which has an important influence on the form of slurry pipe transport flow and velocity distribution. Directly probing the wall slip characteristics using conventional experimental methods is difficult. Therefore, this paper established a noncontact experimental platform for monitoring the microscopic slip layer of CPB pipeline transport independently based on particle image velocimetry (PIV) and analyzed the effects of slurry temperature, pipe diameter, solid concentration, and slurry flow on the wall slip velocity of the CPB slurry, which refined the theory of the effect of wall slip characteristics on pipeline transport. The results showed that the CPB slurry had an extensive slip layer at the pipe wall with significant wall slip. High slurry temperature improved the degree of particle Brownian motion within the slurry and enhanced the wall slip effect. Increasing the pipe diameter was not conducive to the formation of the slurry slip layer and led to a transition in the CPB slurry flow pattern. The increase in the solid concentration raised the interlayer shear effect of CPB slurry flow and the slip velocity. The slip velocity value increased from 0.025 to 0.056 m·s−1 when the solid content improved from 55wt% to 65wt%. When slurry flow increased, the CPB slurry flocculation structure changed, which affected the slip velocity, and the best effect of slip layer resistance reduction was achieved when the transported flow rate was 1.01 m3·h−1. The results had important theoretical significance for improving the stability and economy of the CPB slurry in the pipeline.
  • loading
  • [1]
    A.X. Wu, Z.E. Ruan, and J.D. Wang, Rheological behavior of paste in metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 717. doi: 10.1007/s12613-022-2423-6
    [2]
    T. Kasap, E. Yilmaz, and M. Sari, Physico-chemical and micro-structural behavior of cemented mine backfill: Effect of pH in dam tailings, J. Environ. Manage., 314(2022), art. No. 115034. doi: 10.1016/j.jenvman.2022.115034
    [3]
    T. Chen, K. Zhao, Y.J. Yan, Y. Zhou, Z.W. He, and L.J. Guo, Mechanical properties and acoustic emission response of cemented tailings backfill under variable angle shear, Constr. Build. Mater., 343(2022), art. No. 128114. doi: 10.1016/j.conbuildmat.2022.128114
    [4]
    A. Roshani and M. Fall, Rheological properties of cemented paste backfill with nano-silica: Link to curing temperature, Cem. Concr. Compos., 114(2020), art. No. 103785. doi: 10.1016/j.cemconcomp.2020.103785
    [5]
    S. Haruna and M. Fall, Time- and temperature-dependent rheological properties of cemented paste backfill that contains superplasticizer, Powder Technol., 360(2020), p. 731. doi: 10.1016/j.powtec.2019.09.025
    [6]
    E.A. Ermolovich, A.L. Ivannikov, M.M. Khayrutdinov, C.B. Kongar-Syuryun, and Y.S. Tyulyaeva, Creation of a nanomodified backfill based on the waste from enrichment of water-soluble ores, Materials (Basel), 15(2022), No. 10, art. No. 3689.
    [7]
    K. El Mahboub, M. Mbonimpa, T. Belem, and A. Maqsoud, Rheological characterization of cemented paste backfills containing superabsorbent polymers (SAPs), Constr. Build. Mater., 317(2022), art. No. 125863. doi: 10.1016/j.conbuildmat.2021.125863
    [8]
    Z. Yan, S. Yin, X. Chen, and L. Wang, Rheological properties and wall-slip behavior of cemented tailing–waste rock backfill (CTWB) paste, Constr. Build. Mater., 324(2022), art. No. 126723. doi: 10.1016/j.conbuildmat.2022.126723
    [9]
    S.H. Yin, Y. Zhou, X. Chen, and G.C. Li, A new acoustic emission characteristic parameter can be utilized to evaluate the failure of cemented paste backfill and rock combination, Constr. Build. Mater., 392(2023), art. No. 132017. doi: 10.1016/j.conbuildmat.2023.132017
    [10]
    J. Ribeiro, D. Flores, C.R. Ward, and L.F.O. Silva, Identification of nanominerals and nanoparticles in burning coal waste piles from Portugal, Sci. Total Environ., 408(2010), No. 23, p. 6032. doi: 10.1016/j.scitotenv.2010.08.046
    [11]
    J. Wang, J. Ma, K. Yang, S. Yao, and X. Shi, Effects and laws analysis for the mining technique of grouting into the overburden bedding separation, J. Cleaner Prod., 288(2021), art. No. 125121. doi: 10.1016/j.jclepro.2020.125121
    [12]
    M. Housseinpour, M. Osanloo, and Y. Azimi, Evaluation of positive and negative impacts of mining on sustainable development by a semi-quantitative method, J. Cleaner Prod., 366(2022), art. No. 132955. doi: 10.1016/j.jclepro.2022.132955
    [13]
    S.L. Sinha, S.K. Dewangan, and A. Sharma, A review on particulate slurry erosive wear of industrial materials: In context with pipeline transportation of mineral−slurry, Part. Sci. Technol., 35(2017), No. 1, p. 103. doi: 10.1080/02726351.2015.1131792
    [14]
    Q.L. Zhang, Q. Liu, J.W. Zhao, and J.G. Liu, Pipeline transportation characteristics of filling paste-like slurry pipeline in deep mine, Chin. J. Nonferrous Met., 25(2015), No. 11, p. 3190.
    [15]
    C. Qi, Q. Chen, A. Fourie, J. Zhao, and Q. Zhang, Pressure drop in pipe flow of cemented paste backfill: Experimental and modeling study, Powder Technol., 333(2018), p. 9. doi: 10.1016/j.powtec.2018.03.070
    [16]
    C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025. doi: 10.1016/j.mineng.2019.106025
    [17]
    L. Liu, Z. Fang, C. Qi, B. Zhang, L. Guo, and K.I. Song, Numerical study on the pipe flow characteristics of the cemented paste backfill slurry considering hydration effects, Powder Technol., 343(2019), p. 454. doi: 10.1016/j.powtec.2018.11.070
    [18]
    D. Wu, B. Yang, and Y. Liu, Transportability and pressure drop of fresh cemented coal gangue–fly ash backfill (CGFB) slurry in pipe loop, Powder Technol., 284(2015), p. 218. doi: 10.1016/j.powtec.2015.06.072
    [19]
    Q.S. Chen, S.Y. Sun, Y.K. Liu, C.C. Qi, H.B. Zhou, and Q.L. Zhang, Immobilization and leaching characteristics of fluoride from phosphogypsum-based cemented paste backfill, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1440. doi: 10.1007/s12613-021-2274-6
    [20]
    L. Liu, J. Xin, C. Huan, et al., Effect of curing time on the mesoscopic parameters of cemented paste backfill simulated using the particle flow code technique, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 590. doi: 10.1007/s12613-020-2007-2
    [21]
    H. Li, A.X. Wu, H.J. Wang, H. Chen, and L.H. Yang, Changes in underflow solid fraction and yield stress in paste thickeners by circulation, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 349. doi: 10.1007/s12613-020-2184-z
    [22]
    N. Zhou, C.W. Dong, J.X. Zhang, G.H. Meng, and Q.Q. Cheng, Influences of mine water on the properties of construction and demolition waste-based cemented paste backfill, Constr. Build. Mater., 313(2021), art. No. 125492. doi: 10.1016/j.conbuildmat.2021.125492
    [23]
    T. Asim and R. Mishra, Computational fluid dynamics based optimal design of hydraulic capsule pipelines transporting cylindrical capsules, Powder Technol., 295(2016), p. 180. doi: 10.1016/j.powtec.2016.03.013
    [24]
    H.K. Sun, D.Q. Gan, Z.L. Xue, and Y.J. Zhang, Categorization of factors affecting the resistance and parameters optimization of ultra-fine cemented paste backfill pipeline transport, Buildings, 12(2022), No. 10, art. No. 1697. doi: 10.3390/buildings12101697
    [25]
    D.R. Kaushal, T. Thinglas, Y. Tomita, S. Kuchii, and H. Tsukamoto, CFD modeling for pipeline flow of fine particles at high concentration, Int. J. Multiphase Flow, 43(2012), p. 85. doi: 10.1016/j.ijmultiphaseflow.2012.03.005
    [26]
    M. Liu, L.Y. Chen, and Y.F. Duan, Local resistance characteristics of highly concentrated coal-water slurry flow through fittings, Korean J. Chem. Eng., 26(2009), No. 2, p. 569. doi: 10.1007/s11814-009-0097-7
    [27]
    N. Gharib, B. Bharathan, L. Amiri, M. McGuinness, F.P. Hassani, and A.P. Sasmito, Flow characteristics and wear prediction of Herschel–Bulkley non-Newtonian paste backfill in pipe elbows, Can. J. Chem. Eng., 95(2017), No. 6, p. 1181. doi: 10.1002/cjce.22749
    [28]
    J. Chang, T. Jung, H. Choi, and J. Kim, Predictions of the effective slip length and drag reduction with a lubricated micro-groove surface in a turbulent channel flow, J. Fluid Mech., 874(2019), p. 797. doi: 10.1017/jfm.2019.468
    [29]
    F. Hadri, A. Besq, S. Guillou, and R. Makhloufi, Drag reduction with an aqueous solution of CTAC-NaSal: Study of the wall slip with a Couette geometry, C.R. Mec., 338(2010), No. 3, p. 152. doi: 10.1016/j.crme.2010.03.002
    [30]
    Y.C. Lam, Z.Y. Wang, X. Chen, and S.C. Joshi, Wall slip of concentrated suspension melts in capillary flows, Powder Technol., 177(2007), No. 3, p. 162. doi: 10.1016/j.powtec.2007.03.044
    [31]
    M. Malik, D.M. Kalyon, and J.C. Golba Jr, Simulation of Co-rotating twin screw extrusion process subject to pressure-dependent wall slip at barrel and screw surfaces: 3D FEM analysis for combinations of forward- and reverse-conveying screw elements, Int. Polym. Process., 29(2014), No. 1, p. 51. doi: 10.3139/217.2802
    [32]
    S.A. Gulmus and U. Yilmazer, Effect of volume fraction and particle size on wall slip in flow of polymeric suspensions, J. Appl. Polym. Sci., 98(2005), No. 1, p. 439. doi: 10.1002/app.21928
    [33]
    L. Fusi, A. Farina, G. Saccomandi, and K.R. Rajagopal, Lubrication approximation of flows of a special class of non-Newtonian fluids defined by rate type constitutive equations, Appl. Math. Model., 60(2018), p. 508. doi: 10.1016/j.apm.2018.03.038
    [34]
    H. Mirzaeifar, K. Hatami, and M.R. Abdi, Pullout testing and Particle Image Velocimetry (PIV) analysis of geogrid reinforcement embedded in granular drainage layers, Geotext. Geomembr., 50(2022), No. 6, p. 1083. doi: 10.1016/j.geotexmem.2022.06.008
    [35]
    S. Hochstein, A. Jakupov, J.U. Schmollack, D. Sporer, V. Wank, and R. Blickhan, An alternative illumination source based on LEDs for PIV measurements on human swimmers—A feasibility study, Flow Meas. Instrum., 88(2022), art. No. 102251. doi: 10.1016/j.flowmeasinst.2022.102251
    [36]
    T. Hori and J. Sakakibara, High-speed scanning stereoscopic PIV for 3D vorticity measurement in liquids, Meas. Sci. Technol., 15(2004), No. 6, p. 1067. doi: 10.1088/0957-0233/15/6/005
    [37]
    A. Sciacchitano, B. Wieneke, and F. Scarano, PIV uncertainty quantification by image matching, Meas. Sci. Technol., 24(2013), No. 4, art. No. 045302. doi: 10.1088/0957-0233/24/4/045302
    [38]
    X. Zhang and X. Wang, Novel survey on the color-image graying algorithm, [in] 2016 IEEE International Conference on Computer and Information Technology (CIT), Nadi, 2016, p. 750.
    [39]
    S. Ghosh, D. van den Ende, F. Mugele, and M.H.G. Duits, Apparent wall-slip of colloidal hard-sphere suspensions in microchannel flow, Colloids Surf. A: Physicochem. Eng. Aspects, 491(2016), p. 50. doi: 10.1016/j.colsurfa.2015.11.066
    [40]
    B.J. Medhi, A. Ashok Kumar, and A. Singh, Apparent wall slip velocity measurements in free surface flow of concentrated suspensions, Int. J. Multiphase Flow, 37(2011), No. 6, p. 609. doi: 10.1016/j.ijmultiphaseflow.2011.03.006
    [41]
    J. He, S.S. Lee, and D.M. Kalyon, Shear viscosity and wall slip behavior of dense suspensions of polydisperse particles, J. Rheol., 63(2019), No. 1, p. 19. doi: 10.1122/1.5053702
    [42]
    M. Karzar-Jeddi, H.X. Luo, and P.T. Cummings, Mobilities of polydisperse hard spheres near a no-slip wall, Comput. Fluids, 176(2018), p. 40. doi: 10.1016/j.compfluid.2018.09.003
    [43]
    X. Ma, Y. Duan, and H. Li, Wall slip and rheological behavior of petroleum-coke sludge slurries flowing in pipelines, Powder Technol., 230(2012), p. 127. doi: 10.1016/j.powtec.2012.07.019
    [44]
    L.Y. Chen, Y.F. Duan, C.S. Zhao, and L.G. Yang, Rheological behavior and wall slip of concentrated coal water slurry in pipe flows, Chem. Eng. Process. Process. Intensif., 48(2009), No. 7, p. 1241. doi: 10.1016/j.cep.2009.05.002
    [45]
    A.X. Wu, X.H. Liu, H.J. Wang, Y.M. Wang, H.Z. Jiao, and S.Z. Liu, Resistance characteristics of structure fluid backfilling slurry in pipeline transport, J. Cent. South Univ. Sci. Technol., 45(2014), No. 12, p. 4325.
    [46]
    F. Soltani and Ü. Yilmazer, Slip velocity and slip layer thickness in flow of concentrated suspensions, J. Appl. Polym. Sci., 70(1998), No. 3, p. 515. doi: 10.1002/(SICI)1097-4628(19981017)70:3<515::AID-APP13>3.0.CO;2-#
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(494) PDF Downloads(49) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return