Cite this article as: |
Shenyang Ouyang, Yanli Huang, Nan Zhou, Ming Li, Xiaotong Li, Junmeng Li, Fei Ke, and Yahui Liu, Experiment on acoustic emission response and damage evolution characteristics of polymer-modified cemented paste backfill under uniaxial compression, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1502-1514. https://doi.org/10.1007/s12613-023-2617-6 |
Yanli Huang E-mail: 5306@cumt.edu.cn
[1] |
J.M. Li, Y.L. Huang, S.Y. Ouyang, et al., Transparent characterization and quantitative analysis of broken gangue’s 3D fabric under the bearing compression, Int. J. Min. Sci. Technol., 32(2022), No. 2, p. 335. doi: 10.1016/j.ijmst.2021.11.013
|
[2] |
X.J. Deng, Y. Li, F. Wang, et al., Experimental study on the mechanical properties and consolidation mechanism of microbial grouted backfill, Int. J. Min. Sci. Technol., 32(2022), No. 2, p. 271. doi: 10.1016/j.ijmst.2022.01.010
|
[3] |
T.Z. Gao and F. He, Research of geological environment remediation and reconstruction of coal mining area in western of Shijiazhuang city, China, Adv. Mater. Res., 726-731(2013), p. 1628. doi: 10.4028/www.scientific.net/AMR.726-731.1628
|
[4] |
Y. Shi, L. Cheng, M. Tao, S.S. Tong, X.J. Yao, and Y.F. Liu, Using modified quartz sand for phosphate pollution control in cemented phosphogypsum (PG) backfill, J. Cleaner Prod., 283(2021), art. No. 124652. doi: 10.1016/j.jclepro.2020.124652
|
[5] |
X.J. Deng, J.X. Zhang, B. Klein, B. de Wit, and J.W. Zhang, Time-dependent lateral pressure of the filling barricade for roadway cemented backfill mining technology, Mech. Time-Depend. Mater., 24(2020), No. 1, p. 41. doi: 10.1007/s11043-018-09405-w
|
[6] |
Q. Sun, J.X. Zhang, N. Zhou, and W.Y. Qi, Roadway backfill coal mining to preserve surface water in Western China, Mine Water Environ., 37(2018), No. 2, p. 366. doi: 10.1007/s10230-017-0466-0
|
[7] |
A.G. Doven and A. Pekrioglu, Material properties of high volume fly ash cement paste structural fill, J. Mater. Civ. Eng., 17(2005), No. 6, p. 686. doi: 10.1061/(ASCE)0899-1561(2005)17:6(686)
|
[8] |
R. Wu, P.H.S.W. Kulatilake, H. Luo, and K. Zhao, Design of the key bearing layer and secondary mining technology for previously mined areas of small coal mines, Rock Mech. Rock Eng., 53(2020), No. 4, p. 1685. doi: 10.1007/s00603-019-02001-5
|
[9] |
Y. Chen, S.Q. Ma, and Q.J. Cao, Extraction of the remnant coal pillar in regular and irregular shapes: A case study, J. Loss Prev. Process Ind., 55(2018), p. 191. doi: 10.1016/j.jlp.2018.06.012
|
[10] |
Y. Yu, K.Z. Deng, and S.E. Chen, Mine size effects on coal pillar stress and their application for partial extraction, Sustainability, 10(2018), No. 3, art. No. 792. doi: 10.3390/su10030792
|
[11] |
R.H. Su and H.S. Shen, Physical characteristics of section coal and rock pillars under roof shock disturbances from goaf, Front. Phys., 8(2020), art. No. 223. doi: 10.3389/fphy.2020.00223
|
[12] |
S. Guo, M. Fall, and S. Haruna, Interface shear behavior of cementing underground mine backfill, Int. J. Geomech., 20(2020), No. 12, art. No. 04020230. doi: 10.1061/(ASCE)GM.1943-5622.0001852
|
[13] |
L. Liu, J. Xin, C. Huan, et al., Effect of curing time on the mesoscopic parameters of cemented paste backfill simulated using the particle flow code technique, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 590. doi: 10.1007/s12613-020-2007-2
|
[14] |
J.H. Qin, J. Zheng, and L. Li, Experimental study of the shrinkage behavior of cemented paste backfill, J. Rock Mech. Geotech. Eng., 13(2021), No. 3, p. 545. doi: 10.1016/j.jrmge.2021.01.005
|
[15] |
C.C. Qi, and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025. doi: 10.1016/j.mineng.2019.106025
|
[16] |
L. Cui and M. Fall, Multiphysics modeling and simulation of strength development and distribution in cemented tailings backfill structures, Int. J. Concr. Struct. Mater., 12(2018), No. 1, art. No. 25. doi: 10.1186/s40069-018-0250-y
|
[17] |
X.J. Deng, J.X. Zhang, B. Klein, N. Zhou, and B. deWit, Experimental characterization of the influence of solid components on the rheological and mechanical properties of cemented paste backfill, Int. J. Miner. Process., 168(2017), p. 116. doi: 10.1016/j.minpro.2017.09.019
|
[18] |
D. Ma, S.B. Kong, Z.H. Li, Q. Zhang, Z.H. Wang, and Z.L. Zhou, Effect of wetting-drying cycle on hydraulic and mechanical properties of cemented paste backfill of the recycled solid wastes, Chemosphere, 282(2021), art. No. 131163. doi: 10.1016/j.chemosphere.2021.131163
|
[19] |
L.H. Yang, H.J. Wang, A.X. Wu, et al., Effect of mixing time on hydration kinetics and mechanical property of cemented paste backfill, Constr. Build. Mater., 247(2020), art. No. 118516. doi: 10.1016/j.conbuildmat.2020.118516
|
[20] |
B. Ercikdi, G. Külekci, and T. Yılmaz, Utilization of granulated marble wastes and waste bricks as mineral admixture in cemented paste backfill of sulphide-rich tailings, Constr. Build. Mater., 93(2015), p. 573. doi: 10.1016/j.conbuildmat.2015.06.042
|
[21] |
X.G. Zhang, J. Lin, J.X. Liu, F. Li, and Z.Z. Pang, Investigation of hydraulic-mechanical properties of paste backfill containing coal gangue-fly ash and its application in an underground coal mine, Energies, 10(2017), No. 9, art. No. 1309. doi: 10.3390/en10091309
|
[22] |
X. Chen, X.Z. Shi, J. Zhou, X.H. Du, Q.S. Chen, and X.Y. Qiu, Effect of overflow tailings properties on cemented paste backfill, J. Environ. Manage., 235(2019), p. 133. doi: 10.1016/j.jenvman.2019.01.040
|
[23] |
B. Ercikdi, F. Cihangir, A. Kesimal, H. Deveci, and İ. Alp, Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings, J. Hazard. Mater., 168(2009), No. 2-3, p. 848. doi: 10.1016/j.jhazmat.2009.02.100
|
[24] |
E. Yilmaz, Stope depth effect on field behaviour and performance of cemented paste backfills, Int. J. Min. Reclam. Environ., 32(2018), No. 4, p. 273. doi: 10.1080/17480930.2017.1285858
|
[25] |
R.V. de la Villa, R. García, S. Martínez-Ramírez, and M. Frías, Effects of calcination temperature and the addition of ZnO on coal waste activation: A mineralogical and morphological evolution, Appl. Clay Sci., 150(2017), p. 1. doi: 10.1016/j.clay.2017.08.031
|
[26] |
E.H. Kadri, S. Kenai, K. Ezziane, R. Siddique, and G. De Schutter, Influence of metakaolin and silica fume on the heat of hydration and compressive strength development of mortar, Appl. Clay Sci., 53(2011), No. 4, p. 704. doi: 10.1016/j.clay.2011.06.008
|
[27] |
C.J. Zhou, L.L. Chen, S.P. Zheng, Y.X. Xu, and D.C. Feng, Rheological, mechanical, and abrasion characteristics of polymer-modified cement mortar and concrete, Can. J. Civ. Eng., 47(2020), No. 11, p. 1226. doi: 10.1139/cjce-2019-0480
|
[28] |
R. Wang, X. X. Shi, and P. M. Wang, Recent research on polymer-modified cement mortar in China, Adv. Mater. Res., 687(2013), p. 57. doi: 10.4028/www.scientific.net/AMR.687.57
|
[29] |
J.P. Xiong, J.X. Deng, W. Hao, and R.P. Qin, Study on modification mechanism of the polymer modified cement concrete, Appl. Mech. Mater., 357-360(2013), p. 998. doi: 10.4028/www.scientific.net/AMM.357-360.998
|
[30] |
Y. Tian, X.Y. Jin, N.G. Jin, R.Y. Zhao, Z.J. Li, and H.Y. Ma, Research on the microstructure formation of polyacrylate latex modified mortars, Constr. Build. Mater., 47(2013), p. 1381. doi: 10.1016/j.conbuildmat.2013.06.016
|
[31] |
J. Mirza, M. Mirza and R. Lapointe, Laboratory and field performance of polymer-modified cement-based repair mortars in cold climates, Constr. Build. Mater., 16(2002), No. 6, p. 365. doi: 10.1016/S0950-0618(02)00027-2
|
[32] |
W. Mahmood, A. Mohammed, and K. Ghafor, Viscosity, yield stress and compressive strength of cement-based grout modified with polymers, Results Mater., 4(2019), art. No. 100043. doi: 10.1016/j.rinma.2019.100043
|
[33] |
X.J. Zhang, M.R. Du, H.Y. Fang, M.S. Shi, C. Zhang, and F.M. Wang, Polymer-modified cement mortars: Their enhanced properties, applications, prospects, and challenges, Constr. Build. Mater., 299(2021), art. No. 124290. doi: 10.1016/j.conbuildmat.2021.124290
|
[34] |
Z. Naseem, E. Shamsaei, K. Sagoe-Crentsil, and W.H. Duan, Antifoaming effect of graphene oxide nanosheets in polymer-modified cement composites for enhanced microstructure and mechanical performance, Cem. Concr. Res., 158(2022), art. No. 106843. doi: 10.1016/j.cemconres.2022.106843
|
[35] |
Y.P. Liu, J.T. Wang, S.G. Hu, S. Cao, and F.Z. Wang, Enhancing the mechanical behaviour of concretes through polymer modification of the aggregate-cement paste interface, J. Build. Eng., 54(2022), art. No. 104605. doi: 10.1016/j.jobe.2022.104605
|
[36] |
Q. Liu, Z.Y. Lu, X.S. Hu, et al., A mechanical strong polymer-cement composite fabricated by in situ polymerization within the cement matrix, J. Build. Eng., 42(2021), art. No. 103048. doi: 10.1016/j.jobe.2021.103048
|
[37] |
G.L. Xue and E. Yilmaz, Strength, acoustic, and fractal behavior of fiber reinforced cemented tailings backfill subjected to triaxial compression loads, Constr. Build. Mater., 338(2022), art. No. 127667. doi: 10.1016/j.conbuildmat.2022.127667
|
[38] |
R. Li, Z. Leng, Y. Zhang, and X. Ma, Preparation and characterization of waterborne epoxy modified bitumen emulsion as a potential high-performance cold binder, J. Cleaner Prod., 235(2019), p. 1265. doi: 10.1016/j.jclepro.2019.06.267
|
[39] |
S. Cao, E. Yilmaz, W.D. Song, E. Yilmaz, and G.L. Xue, Loading rate effect on uniaxial compressive strength behavior and acoustic emission properties of cemented tailings backfill, Constr. Build. Mater., 213(2019), p. 313. doi: 10.1016/j.conbuildmat.2019.04.082
|
[40] |
Q.M. Xu, Y. Li, R.T. Xu, Y.M. Liu, and Y.M. Dong, Performance evaluation of waterborne epoxy resin modified emulsified asphalt mixtures for asphalt pavement pothole repair, Constr. Build. Mater., 325(2022), art. No. 126709. doi: 10.1016/j.conbuildmat.2022.126709
|
[41] |
Y. Li, Y.C. Guo, Z.G. Lyu, and X. Wei, Investigation of the effect of waterborne epoxy resins on the hydration kinetics and performance of cement blends, Constr. Build. Mater., 301(2021), art. No. 124045. doi: 10.1016/j.conbuildmat.2021.124045
|
[42] |
A. Abdukadir, Z.S. Pei, W. Yu, et al., Performance optimization of epoxy resin-based modified liquid asphalt mixtures, Case Stud. Constr. Mater., 17(2022), art. No. e01598.
|
[43] |
L.X. Wang, J.W. Zhang, F.J. Wang, et al., Investigation on the effects of polyaniline/lignin composites on the performance of waterborne polyurethane coating for protecting cement-based materials, J. Build. Eng., 64(2023), art. No. 105665. doi: 10.1016/j.jobe.2022.105665
|
[44] |
X.P. Song, Y.X. Hao, S. Wang, L. Zhang, W. Liu, and J.B. Li, Mechanical properties, crack evolution and damage characteristics of prefabricated fractured cemented paste backfill under uniaxial compression, Constr. Build. Mater., 330(2022), art. No. 127251. doi: 10.1016/j.conbuildmat.2022.127251
|
[45] |
J. Wang, J.X. Fu, W.D. Song, Y.F. Zhang, and Y. Wang, Mechanical behavior, acoustic emission properties and damage evolution of cemented paste backfill considering structural feature, Constr. Build. Mater., 261(2020), art. No. 119958. doi: 10.1016/j.conbuildmat.2020.119958
|
[46] |
S. Chakilam and L. Cui, Effect of polypropylene fiber content and fiber length on the saturated hydraulic conductivity of hydrating cemented paste backfill, Constr. Build. Mater., 262(2020), art. No. 120854. doi: 10.1016/j.conbuildmat.2020.120854
|
[47] |
T. Yılmaz, B. Ercikdi, and F. Cihangir, Evaluation of the neutralization performances of the industrial waste products (IWPs) in sulphide-rich environment of cemented paste backfill, J. Environ. Manage., 258(2020), art. No. 110037. doi: 10.1016/j.jenvman.2019.110037
|
[48] |
Y. Niu, X.P. Zhou, and F. Berto, Evaluation of fracture mode classification in flawed red sandstone under uniaxial compression, Theor. Appl. Fract. Mech., 107(2020), art. No. 102528. doi: 10.1016/j.tafmec.2020.102528
|
[49] |
Q.Q. Zheng, Y. Xu, H. Hu, J.W. Qian, Y. Ma, and X. Gao, Quantitative damage, fracture mechanism and velocity structure tomography of sandstone under uniaxial load based on acoustic emission monitoring technology, Constr. Build. Mater., 272(2021), art. No. 121911. doi: 10.1016/j.conbuildmat.2020.121911
|
[50] |
S. Shahidan, R. Pulin, N.M. Bunnori, and K.M. Holford, Damage classification in reinforced concrete beam by acoustic emission signal analysis, Constr. Build. Mater., 45(2013), p. 78. doi: 10.1016/j.conbuildmat.2013.03.095
|
[51] |
N. Ouffa, M. Benzaazoua, T. Belem, R. Trauchessec, and A. Lecomte, Alkaline dissolution potential of aluminosilicate minerals for the geosynthesis of mine paste backfill, Mater. Today Commun., 24(2020), art. No. 101221. doi: 10.1016/j.mtcomm.2020.101221
|
[52] |
D. Ouattara, M. Mbonimpa, A. Yahia, and T. Belem, Assessment of rheological parameters of high density cemented paste backfill mixtures incorporating superplasticizers, Constr. Build. Mater., 190(2018), p. 294. doi: 10.1016/j.conbuildmat.2018.09.066
|
[53] |
M.B.C. Mangane, R. Argane, R. Trauchessec, A. Lecomte, and M. Benzaazoua, Influence of superplasticizers on mechanical properties and workability of cemented paste backfill, Miner. Eng., 116(2018), p. 3. doi: 10.1016/j.mineng.2017.11.006
|
[54] |
B. Yin, Research on the Fly Ash Cemented Filling Materials and Its Modifcation and Further Application [Dissertation], Taiyuan University of Technology, Taiyuan, 2018.
|