Zeli Jia, Xiaomeng Fan, Jiangyi He, Jimei Xue, Fang Ye,  and Laifei Cheng, Evolution of microstructure and electromagnetic interference shielding performance during the ZrC precursor thermal decomposition process, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1398-1406. https://doi.org/10.1007/s12613-023-2619-4
Cite this article as:
Zeli Jia, Xiaomeng Fan, Jiangyi He, Jimei Xue, Fang Ye,  and Laifei Cheng, Evolution of microstructure and electromagnetic interference shielding performance during the ZrC precursor thermal decomposition process, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1398-1406. https://doi.org/10.1007/s12613-023-2619-4
Research Article

Evolution of microstructure and electromagnetic interference shielding performance during the ZrC precursor thermal decomposition process

+ Author Affiliations
  • Corresponding author:

    Xiaomeng Fan    E-mail: fanxiaomeng@nwpu.edu.cn

  • Received: 7 November 2022Revised: 15 February 2023Accepted: 21 February 2023Available online: 22 February 2023
  • A polymer-derived ZrC ceramic with excellent electromagnetic interference (EMI) shielding performance was developed to meet ultra-high temperature requirements. The thermal decomposition process of ZrC organic precursor was studied to reveal the evolution of phase composition, microstructure, and EMI shielding performance. Furthermore, the carbothermal reduction reaction occurred at 1300°C, and the transition from ZrO2 to ZrC was completed at 1700°C. With the increase in the annealing temperature, the tetragonal zirconia gradually transformed into monoclinic zirconia, and the transition was completed at the annealing temperature of 1500°C due to the consumption of a large amount of the carbon phase. The average total shielding effectiveness values were 11.63, 22.67, 22.91, 22.81, and 34.73 dB when the polymer-derived ZrC was annealed at 900, 1100, 1300, 1500, and 1700°C, respectively. During the thermal decomposition process, the graphitization degree and phase distribution of free carbon played a dominant role in the shielding performance. The typical core–shell structure composed of carbon and ZrC can be formed at the annealing temperature of 1700°C, which results in excellent shielding performance.
  • loading
  • [1]
    A. Vinci, L. Zoli, D. Sciti, J. Watts, G.E. Hilmas, and W.G. Fahrenholtz, Influence of fibre content on the strength of carbon fibre reinforced HfC/SiC composites up to 2100°C, J. Eur. Ceram. Soc., 39(2019), No. 13, p. 3594. doi: 10.1016/j.jeurceramsoc.2019.04.049
    [2]
    Y.J. Jia, M.A.R. Chowdhury, and C. Xu, Electromagnetic property of polymer derived SiC–C solid solution formed at ultra-high temperature, Carbon, 162(2020), p. 74. doi: 10.1016/j.carbon.2020.02.036
    [3]
    M. Zhang, X.M. Fan, F. Ye, J.M. Xue, S.W. Fan, and L.F. Cheng, Evolution of the composition, microstructure and electromagnetic properties of HfOC ceramics with pyrolysis temperature, Ceram. Int., 48(2022), No. 12, p. 16630. doi: 10.1016/j.ceramint.2022.02.207
    [4]
    H. Zhang, C.Y. Xing, and Y.P. Cao, Research status of high-entropy boride ceramics and its application prospect in extreme environments, J. Nanjing Univ. Aeronaut. Astronaut., 53(2021), p. 112.
    [5]
    H. Li, Y.Z. Gou, S.G. Chen, and H. Wang, Synthesis and characterization of soluble and meltable Zr-containing polymers as the single-source precursor for Zr(C, N) multinary ceramics, J. Mater. Sci., 53(2018), No. 15, p. 10933. doi: 10.1007/s10853-018-2382-5
    [6]
    Y. Jia, M.A.R. Chowdhury, D. Zhang, and C. Xu, Wide-band tunable microwave-absorbing ceramic composites made of polymer-derived SiOC ceramic and in situ partially surface-oxidized ultra-high-temperature ceramics, ACS Appl. Mater. Interfaces, 11(2019), No. 49, p. 45862. doi: 10.1021/acsami.9b16475
    [7]
    X.K. Lu, X. Li, Y.J. Wang, et al., Construction of ZnIn2S4 nanosheets/3D carbon heterostructure with Schottky contact for enhancing electromagnetic wave absorption performance, Chem. Eng. J., 431(2022), art. No. 134078. doi: 10.1016/j.cej.2021.134078
    [8]
    X.K. Lu, X. Li, Y.C. Cao, et al., 1D CNT-expanded 3D carbon foam/Si3N4 sandwich heterostructure: Utilizing the polarization compensation effect for keeping stable electromagnetic absorption performance at elevated temperature, ACS Appl. Mater. Interfaces, 14(2022), No. 34, p. 39188.
    [9]
    M.H. Li, N. Chai, X.M. Liu, et al., Sustainable paper templated ultrathin, light-weight and flexible niobium carbide based films against electromagnetic interference, Carbon, 183(2021), p. 929. doi: 10.1016/j.carbon.2021.07.056
    [10]
    N. Yang and K. Lu, Effects of transition metals on the evolution of polymer-derived SiOC ceramics, Carbon, 171(2021), p. 88. doi: 10.1016/j.carbon.2020.08.072
    [11]
    Y.J. Jia, T.D. Ajayi, M.A. Roberts Jr, C.C. Chung, and C.Y. Xu, Ultrahigh-temperature ceramic-polymer-derived SiOC ceramic composites for high-performance electromagnetic interference shielding, ACS Appl. Mater. Interfaces, 12(2020), No. 41, p. 46254. doi: 10.1021/acsami.0c08479
    [12]
    Q.B. Wen, Z.J. Yu, and R. Riedel, The fate and role of in situ formed carbon in polymer-derived ceramics, Prog. Mater. Sci., 109(2020), art. No. 100623. doi: 10.1016/j.pmatsci.2019.100623
    [13]
    M.X. Li, L.F. Cheng, F. Ye, C.L. Zhang, and J. Zhou, Formation of nanocrystalline graphite in polymer-derived SiCN by polymer infiltration and pyrolysis at a low temperature, J. Adv. Ceram., 10(2021), No. 6, p. 1256. doi: 10.1007/s40145-021-0501-2
    [14]
    Z.B. Li and Y.G. Wang, Preparation of polymer-derived graphene-like carbon–silicon carbide nanocomposites as electromagnetic interference shielding material for high temperature applications, J. Alloys Compd., 709(2017), p. 313. doi: 10.1016/j.jallcom.2017.03.080
    [15]
    X.L. Liu, X.W. Yin, W.Y. Duan, F. Ye, and X.L. Li, Electromagnetic interference shielding properties of polymer derived SiC–Si3N4 composite ceramics, J. Mater. Sci. Technol., 35(2019), No. 12, p. 2832. doi: 10.1016/j.jmst.2019.07.006
    [16]
    S.V. Ushakov and A. Navrotsky, Experimental approaches to the thermodynamics of ceramics above 1500℃, J. Am. Ceram. Soc., 95(2012), No. 5, p. 1463. doi: 10.1111/j.1551-2916.2012.05102.x
    [17]
    B.W. Chen, Q. Ding, D.W. Ni, et al., Microstructure and mechanical properties of 3D Cf/SiBCN composites fabricated by polymer infiltration and pyrolysis, J. Adv. Ceram., 10(2021), No. 1, p. 28. doi: 10.1007/s40145-020-0414-5
    [18]
    J.B. Zhu and H. Yan, Microstructure and properties of mullite-based porous ceramics produced from coal fly ash with added Al2O3, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 309. doi: 10.1007/s12613-017-1409-2
    [19]
    X.L. Dang, D.L. Zhao, T. Guo, et al., Oxidation behaviors of carbon fiber reinforced multilayer SiC–Si3N4 matrix composites, J. Adv. Ceram., 11(2022), No. 2, p. 354. doi: 10.1007/s40145-021-0539-1
    [20]
    J. Lu, D. Ni, C. Liao, et al., Fabrication and microstructure evolution of Csf/ZrB2–SiC composites via direct ink writing and reactive melt infiltration, J. Adv. Ceram., 10(2021), p. 1371. doi: 10.1007/s40145-021-0512-z
    [21]
    Q. Li, X. Lin, Q. Luo, et al., Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 32. doi: 10.1007/s12613-021-2337-8
    [22]
    Y.G. Wang, X.J. Zhu, L.T. Zhang, and L.F. Cheng, Reaction kinetics and ablation properties of C/C–ZrC composites fabricated by reactive melt infiltration, Ceram. Int., 37(2011), No. 4, p. 1277. doi: 10.1016/j.ceramint.2010.12.002
    [23]
    G.B. Thiyagarajan, E. Koroleva, A. Filimonov, S. Vakhrushev, and R. Kumar, Thermally tunable dielectric performance of t-ZrO2 stabilized amorphous Si(Pb, Zr)OC ceramic nanocomposites, Mater. Chem. Phys., 277(2022), art. No. 125495. doi: 10.1016/j.matchemphys.2021.125495
    [24]
    W.J. Kong, S.Q. Yu, M. Ge, W.G. Zhang, and L.Z. Du, Pyrolysis of an organic polymeric precursor of zirconium carbide ceramics, Chin. J. Process. Eng., 19(2019), No. 3, p. 623.
    [25]
    L. Fu, B. Li, G.F. Xu, J.W. Huang, H. Engqvist, and W. Xia, Size-driven phase transformation and microstructure evolution of ZrO2 nanocrystallites associated with thermal treatments, J. Eur. Ceram. Soc., 41(2021), No. 11, p. 5624. doi: 10.1016/j.jeurceramsoc.2021.04.058
    [26]
    A.C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, 61(2000), No. 20, p. 14095. doi: 10.1103/PhysRevB.61.14095
    [27]
    A.C. Ferrari and J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon, Phys. Rev. B, 64(2001), No. 7, art. No. 075414. doi: 10.1103/PhysRevB.64.075414
    [28]
    R. Florez, M.L. Crespillo, X.Q. He, et al., Early stage oxidation of ZrC under 10 MeV Au3+ ion-irradiation at 800°C, Corros. Sci., 169(2020), art. No. 108609. doi: 10.1016/j.corsci.2020.108609
    [29]
    S. Naim Katea, L. Riekehr, and G. Westin, Synthesis of nano-phase ZrC by carbothermal reduction using a ZrO2–carbon nano-composite, J. Eur. Ceram. Soc., 41(2021), No. 1, p. 62. doi: 10.1016/j.jeurceramsoc.2020.03.055
    [30]
    H.M. Xiang, X.P. Lu, J.J. Li, J.X. Chen, and Y.C. Zhou, Influence of carbon on phase stability of tetragonal ZrO2, Ceram. Int., 40(2014), No. 4, p. 5645. doi: 10.1016/j.ceramint.2013.10.159
    [31]
    R.C. Garvie, The occurrence of metastable tetragonal zirconia as a crystallite size effect, J. Phys. Chem., 69(1965), No. 4, p. 1238. doi: 10.1021/j100888a024
    [32]
    N. Laidani, V. Micheli, and M. Anderle, Carbon effect on the phase structure and the hardness of RF sputtered zirconia films, Thin Solid Films, 382(2001), No. 1-2, p. 23. doi: 10.1016/S0040-6090(00)01682-5
    [33]
    L.Q. Chen, X.W. Yin, X.M. Fan, et al., Mechanical and electromagnetic shielding properties of carbon fiber reinforced silicon carbide matrix composites, Carbon, 95(2015), p. 10. doi: 10.1016/j.carbon.2015.08.011
    [34]
    X.L. Li, X.W. Yin, C.Q. Song, et al., Self-assembly core–shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance, Adv. Funct. Mater., 28(2018), No. 41, art. No. 1803938. doi: 10.1002/adfm.201803938
    [35]
    X. Li, M.H. Li, X.K. Lu, et al., A sheath-core shaped ZrO2–SiC/SiO2 fiber felt with continuously distributed SiC for broad-band electromagnetic absorption, Chem. Eng. J., 125(2022), art. No. 29. doi: 10.1016/j.jmst.2022.02.032
    [36]
    X. Li, G.H. Wang, Q. Li, Y.J. Wang, and X.K. Lu, Dual optimized Ti3C2Tx MXene@ZnIn2S4 heterostructure based on interface and vacancy engineering for improving electromagnetic absorption, Chem. Eng. J., 453(2023), art. No. 139488. doi: 10.1016/j.cej.2022.139488
    [37]
    X. Li, X.K. Lu, M.H. Li, et al., A SiC nanowires/Ba0.75Sr0.25Al2Si2O8 ceramic heterojunction for stable electromagnetic absorption under variable-temperature, J. Mater, Sci. Technol., 125(2022), p. 29.
    [38]
    W.M. Zhang, B. Zhao, H.M. Xiang, F.Z. Dai, S.J. Wu, and Y.C. Zhou, One-step synthesis and electromagnetic absorption properties of high entropy rare earth hexaborides (HE REB6) and high entropy rare earth hexaborides/borates (HE REB6/HE REBO3) composite powders, J. Adv. Ceram., 10(2021), No. 1, p. 62. doi: 10.1007/s40145-020-0417-2
    [39]
    X.F. Zhou, Z.R. Jia, A.L. Feng, et al., Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance, Carbon, 152(2019), p. 827. doi: 10.1016/j.carbon.2019.06.080
    [40]
    M.H. Li, X.M. Fan, H.L. Xu, et al., Controllable synthesis of mesoporous carbon hollow microsphere twined by CNT for enhanced microwave absorption performance, J. Mater. Sci. Technol., 59(2020), p. 164. doi: 10.1016/j.jmst.2020.04.048
    [41]
    X. Lu, X. Li, W. Zhu, and H. Xu, Construction of embedded heterostructures in biomass-derived carbon frameworks for enhancing electromagnetic wave absorption, Carbon, 191(2022), p. 600. doi: 10.1016/j.carbon.2022.01.050
    [42]
    X.K. Lu, D.M. Zhu, X. Li, and Y.J. Wang, Architectural design and interfacial engineering of CNTs@ZnIn2S4 heterostructure/cellulose aerogel for efficient electromagnetic wave absorption, Carbon, 197(2022), p. 209. doi: 10.1016/j.carbon.2022.06.019
    [43]
    M.H. Li, X.W. Yin, H.L. Xu, X.L. Li, L.F. Cheng, and L.T. Zhang, Interface evolution of a C/ZnO absorption agent annealed at elevated temperature for tunable electromagnetic properties, J. Am. Ceram. Soc., 102(2019), No. 9, p. 5305. doi: 10.1111/jace.16404
    [44]
    M.H. Li, W.J. Zhu, X. Li, et al., Ti3C2Tx/MoS2 self-rolling rod-based foam boosts interfacial polarization for electromagnetic wave absorption, Adv. Sci., 9(2022), No. 16, art. No. e2201118. doi: 10.1002/advs.202201118
    [45]
    H.L. Xu, X.W. Yin, X.L. Li, et al., Lightweight Ti2CTx MXene/Poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature, ACS Appl. Mater. Interfaces, 11(2019), No. 10, p. 10198. doi: 10.1021/acsami.8b21671
    [46]
    Q. Li, X.W. Yin, W.Y. Duan, et al., Improved dielectric and electromagnetic interference shielding properties of ferrocene-modified polycarbosilane derived SiC/C composite ceramics, J. Eur. Ceram. Soc., 34(2014), No. 10, p. 2187. doi: 10.1016/j.jeurceramsoc.2014.02.010
    [47]
    X.M. Liu, H.L. Xu, G.Q. Liu, et al., Electromagnetic shielding performance of SiC/graphitic carbon–SiCN porous ceramic nanocomposites derived from catalyst assisted single-source-precursors, J. Eur. Ceram. Soc., 41(2021), No. 9, p. 4806. doi: 10.1016/j.jeurceramsoc.2021.03.026
    [48]
    Q.B. Wen, Z.J. Yu, X.M. Liu, et al., Mechanical properties and electromagnetic shielding performance of single-source-precursor synthesized dense monolithic SiC/HfCxN1−x/C ceramic nanocomposites, J. Mater. Chem. C, 7(2019), No. 34, p. 10683. doi: 10.1039/C9TC02369K
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(577) PDF Downloads(66) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return