Cite this article as: |
Li Zeng, Zhong Zheng, Xiaoyuan Lian, Kai Zhang, Mingmei Zhu, Kaitian Zhang, Chaoyue Xu, and Fei Wang, Intelligent optimization method for the dynamic scheduling of hot metal ladles of one-ladle technology on ironmaking and steelmaking interface in steel plants, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1729-1739. https://doi.org/10.1007/s12613-023-2625-6 |
Zhong Zheng E-mail: zhengzh@cqu.edu.cn
[1] |
R.Y. Yin, Metallurgical Process Engineering, Metallurgical Industry Press, Beijing, 2011.
|
[2] |
R.Y. Yin, A discussion on “smart” steel plant - View from physical system side, Iron Steel, 52(2017), No. 6, p. 1.
|
[3] |
R.Y. Yin, Review on the study of metallurgical process engineering, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1253. doi: 10.1007/s12613-020-2220-z
|
[4] |
W.G. Han, X.P. Li, Y.X. Shi, W.D. Wang, and C.X. Zhang, Online ladle quantity of “one-open-ladle-from-BF-to-BOF” route by using queuing theory, Iron Steel, 48(2013), No. 5, p. 21. doi: 10.13228/j.boyuan.issn0449-749x.2013.05.015
|
[5] |
Z.X. Gu, A.J. Xu, D.F. He, and K. Feng, A calculation model for determining number of hot metal ladle based on queuing theory with constraints of system capacity, J. Chongqing Univ., 40(2017), No. 8, p. 70. doi: 10.11835/j.issn.1000-582X.2017.08.009
|
[6] |
J.J. Cui, S.Z. Luo, F. Liu, and X.H. Xu, Design and realization of the iron melt transport simulating system, J. Syst. Simul., 15(2003), No. 12, p. 1799. doi: 10.16182/j.cnki.joss.2003.12.037
|
[7] |
J. Qiu, N.Y. Tian, A.J. Xu, et al., Development of transport scheduling application software for iron-steel interface at baosteel, Iron Steel, 38(2003), No. 5, p. 73. doi: 10.13228/j.boyuan.issn0449-749x.2003.05.020
|
[8] |
H. Huang, T.Y. Chai, B.L. Zheng, Z.Y. Li, W. Xu, and W. Zhou, Design and development of molten iron scheduling simulation system, J. Syst. Simul., 24(2012), No. 6, p. 1192.
|
[9] |
F. Wang, Y. Liu, A.J. Xu, D.F. He, and H.B. Wang, Modeling and calculation for the molten iron preparation problem based on production schedulling of steelmaking area, [in] Proceedings of the 2nd International Conference on Modeling and Simulation, Liverpool, 2009.
|
[10] |
X.P. Li, W.G. Han, C.X. Zhang, J.H. Liu, Z.J. Wei, and C.Y. Wu, Optimization of interface material flow operation of BF–BOF section, J. Eng. Stud., 9(2017), No. 1, p. 53. doi: 10.3724/SP.J.1224.2017.00053
|
[11] |
S.W. Lu and X.C. Luo, Design of multi-scenario simulation of molten iron logistics system with cranes and cross-train AGVs, J. Syst. Simul., 29(2017), No. 10
|
[12] |
X.Y. Wang, A.J. Xu, D.F. He, and Z.X. Gu, Simulation optimization of logistics for iron-making plant based on plant simulation, Res. Iron Steel, 45(2017), No. 1, p. 17.
|
[13] |
M. Pinedo and K. Hadavi, Scheduling: theory, algorithms, and systems, [in] Proceedings of the 20th Annual Meeting on Operations Research, Berlin, Heidelberg, 1992, p. 35.
|
[14] |
W.H. Gui, C.H. Wang, Y.F. Xie, S. Song, Q.F. Meng, and J.L. Ding, The necessary way to realize great-leap-forward development of process industries, Bull. Nat. Nat. Sci. Found. China, 5(2015), p. 337.
|
[15] |
Z.Y. Zhao, S.X. Liu, M.C. Zhou, and A. Abusorrah, Dual-objective mixed integer linear program and memetic algorithm for an industrial group scheduling problem, IEEE/CAA J. Autom. Sin., 8(2021), No. 6, p. 1199. doi: 10.1109/JAS.2020.1003539
|
[16] |
J.P. Yang, Q. Liu, W.D. Guo, and J.G. Zhang, Quantitative evaluation of multi-process collaborative operation in steelmaking-continuous casting sections, Int. J. Miner. Metall. Mater., 28(2021), 8, p. 1353. doi: 10.1007/s12613-020-2227-5
|
[17] |
Z.J. Xu, Z. Zheng, and X.Q. Gao, Operation optimization of the steel manufacturing process: A brief review, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1274. doi: 10.1007/s12613-021-2273-7
|
[18] |
S.P. Yu and Q.K. Pan, A rescheduling method for operation time delay disturbance in steelmaking and continuous casting production process, J. Iron Steel Res. Int., 19(2012), No. 12, p. 33. doi: 10.1016/S1006-706X(13)60029-1
|
[19] |
S.P. Yu, T.Y. Chai, and Y. Tang, An effective heuristic rescheduling method for steelmaking and continuous casting production process with multirefining modes, IEEE Trans. Syst. Man Cybern:Syst., 46(2016), No. 12, p. 1675. doi: 10.1109/TSMC.2016.2604081
|
[20] |
S.P. Yu, A prediction method for abnormal condition of scheduling plan with operation time delay in steelmaking and continuous casting production process, ISIJ Int., 53(2013), No. 6, p. 1028. doi: 10.2355/isijinternational.53.1028
|
[21] |
L.X. Tang, Y. Zhao, and J.Y. Liu, An improved differential evolution algorithm for practical dynamic scheduling in steelmaking-continuous casting production, IEEE Trans. Evol. Comput., 18(2014), No. 2, art. No. 209. doi: 10.1109/TEVC.2013.2250977
|
[22] |
J.H. Hao, M. Liu, S.L. Jiang, and C. Wu, A soft-decision based two-layered scheduling approach for uncertain steelmaking-continuous casting process, Eur. J. Oper. Res., 244(2015), No. 3, p. 966. doi: 10.1016/j.ejor.2015.02.026
|
[23] |
S.L. Jiang, M. Liu, J.H. Lin, and H.X. Zhong, A prediction-based online soft scheduling algorithm for the real-world steelmaking-continuous casting production, Knowl. Based Syst., 111(2016), p. 159. doi: 10.1016/j.knosys.2016.08.010
|
[24] |
J.Y. Long, Z. Zheng, and X.Q. Gao. Dynamic scheduling in steelmaking-continuous casting production for continuous caster breakdown, Int. J. Prod. Res., 55(2017), No. 11, p. 3197. doi: 10.1080/00207543.2016.1268277
|
[25] |
K.K. Peng, Q.K. Pan, L. Gao, B. Zhang, and X.F. Pang, An improved artificial bee colony algorithm for real-world hybrid flowshop rescheduling in steelmaking–refining–continuous casting process, Comput. Ind. Eng., 122(2018), p. 235. doi: 10.1016/j.cie.2018.05.056
|