Cite this article as: |
Xiucai Wang, Naijian Hu, Jia Yang, Jianwen Chen, Xinmei Yu, Wenbo Zhu, Chaochao Zhao, Ting Wang, and Min Chen, High-performance triboelectric nanogenerator based on ZrB2/polydimethylsiloxane for metal corrosion protection, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1957-1964. https://doi.org/10.1007/s12613-023-2626-5 |
Xiucai Wang E-mail: wxc5168@163.com
Min Chen E-mail: minchen1981@126.com
Supplementary Information-10.1007s12613-023-2626-5.docx |
[1] |
R.W. Sanders, G.L. Crettol, J.D. Brown, et al., Teaching electrochemistry in the general chemistry laboratory through corrosion exercises, J. Chem. Educ., 95(2018), No. 5, p. 842. doi: 10.1021/acs.jchemed.7b00416
|
[2] |
M.S. Banjanin, M.S. Savić, and Z.M.Stojković, Lightning protection of overhead transmission lines using external ground wires, Electr. Power Syst. Res., 127(2015), p. 206. doi: 10.1016/j.jpgr.2015.06.001
|
[3] |
H. Wang, M.Y. Shi, K. Zhu, et al., High performance triboelectric nanogenerators with aligned carbon nanotubes, Nanoscale, 8(2016), No. 43, p. 18489. doi: 10.1039/C6NR06319E
|
[4] |
H.Y. Guo, X.M. He, J.W. Zhong, et al., A nanogenerator for harvesting airflow energy and light energy, J. Mater. Chem. A, 2(2014), No. 7, p. 2079. doi: 10.1039/C3TA14421F
|
[5] |
J. Chun, J.W. Kim, W.S. Jung, et al., Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments, Energy Environ. Sci., 8(2015), No. 10, p. 3006. doi: 10.1039/C5EE01705J
|
[6] |
F. Patolsky, B.P. Timko, G.H. Yu, et al., Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays, Science, 313(2006), No. 5790, p. 1100. doi: 10.1126/science.1128640
|
[7] |
S. Wang, L. Lin and Z.L. Wang, Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics, Nano Lett., 12(2012), No. 12, p. 6339. doi: 10.1021/nl303573d
|
[8] |
L.B. Huang, G.X. Bai, M.C. Wong, Z.B. Yang, W. Xu, and J.H. Hao, Magnetic-assisted noncontact triboelectric nanogenerator converting mechanical energy into electricity and light emissions, Adv. Mater., 28(2016), No. 14, p. 2744. doi: 10.1002/adma.201505839
|
[9] |
Y.Q. Wang, X. Yu, M.F. Yin, et al., Gravity triboelectric nanogenerator for the steady harvesting of natural wind energy, Nano Energy, 82(2021), art. No. 105740. doi: 10.1016/j.nanoen.2020.105740
|
[10] |
Y. Wang, J.Y. Wang, X. Xiao, et al., Multi-functional wind barrier based on triboelectric nanogenerator for power generation, self-powered wind speed sensing and highly efficient windshield, Nano Energy, 73(2020), art. No. 104736. doi: 10.1016/j.nanoen.2020.104736
|
[11] |
H.B. Lin, M.H. He, Q.S. Jing, et al., Angle-shaped triboelectric nanogenerator for harvesting environmental wind energy, Nano Energy, 56(2019), p. 269. doi: 10.1016/j.nanoen.2018.11.037
|
[12] |
L.B. Huang, W. Xu, G.X. Bai, M.C. Wong, Z.B. Yang, and J.H. Hao, Wind energy and blue energy harvesting based on magnetic-assisted noncontact triboelectric nanogenerator, Nano Energy, 30(2016), p. 36. doi: 10.1016/j.nanoen.2016.09.032
|
[13] |
I.W. Tcho, W.G. Kim, J.K. Kim, et al., A flutter-driven triboelectric nanogenerator for harvesting energy of gentle breezes with a rear-fixed fluttering film, Nano Energy, 98(2022), art. No. 107197. doi: 10.1016/j.nanoen.2022.107197
|
[14] |
S.C. Liu, X. Liu, G.L. Zhou, et al., A high-efficiency bioinspired photoelectric-electromechanical integrated nanogenerator, Nat. Commun., 11(2020), No. 1, art. No. 6158. doi: 10.1038/s41467-020-19987-0
|
[15] |
Z.X. Zhang and J. Cai, High output triboelectric nanogenerator based on PTFE and cotton for energy harvester and human motion sensor, Curr. Appl. Phys., 22(2021), p. 1. doi: 10.1016/j.cap.2020.11.001
|
[16] |
K.Q. Xia, Z.Y. Zhu, H.Z. Zhang, C.L. Du, Z.W. Xu, and R.J. Wang, Painting a high-output triboelectric nanogenerator on paper for harvesting energy from human body motion, Nano Energy, 50(2018), p. 571. doi: 10.1016/j.nanoen.2018.06.019
|
[17] |
Z.L. Wang, Triboelectric nanogenerators as new energy technology and self-powered sensors-Principles, problems and perspectives, Faraday Discuss., 176(2014), p. 447. doi: 10.1039/C4FD00159A
|
[18] |
X. Zhao, Z. Zhang, L.X. Xu, et al., Fingerprint-inspired electronic skin based on triboelectric nanogenerator for fine texture recognition, Nano Energy, 85(2021), art. No. 106001. doi: 10.1016/j.nanoen.2021.106001
|
[19] |
H.T. Chen, Y. Song, X.L. Cheng, and H.X. Zhang, Self-powered electronic skin based on the triboelectric generator, Nano Energy, 56(2019), p. 252. doi: 10.1016/j.nanoen.2018.11.061
|
[20] |
P.C. Zhu, B.S. Zhang, H.Y. Wang, et al., 3D printed triboelectric nanogenerator as self-powered human-machine interactive sensor for breathing-based language expression, Nano Res., 15(2022), No. 8, p. 7460. doi: 10.1007/s12274-022-4339-x
|
[21] |
H. Zhou, W. Huang, Z. Xiao, et al., Deep-learning-assisted noncontact gesture-recognition system for touchless human–machine interfaces, Adv. Funct. Mater., 32(2022), No. 49, art. No. 2208271. doi: 10.1002/adfm.202208271
|
[22] |
M. Zhang, T. Gao, J.S. Wang, et al., A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application, Nano Energy, 13(2015), p. 298. doi: 10.1016/j.nanoen.2015.02.034
|
[23] |
F.R. Fan, W. Tang, and Z.L. Wang, Flexible nanogenerators for energy harvesting and self-powered electronics, Adv. Mater., 28(2016), No. 22, p. 4283. doi: 10.1002/adma.201504299
|
[24] |
X.L. Yue, Y. Xi, C.G. Hu, et al., Enhanced output-power of nanogenerator by modifying PDMS film with lateral ZnO nanotubes and Ag nanowires, RSC Adv., 5(2015), No. 41, p. 32566. doi: 10.1039/C5RA02098K
|
[25] |
S. Jang and J.H. Oh, Rapid fabrication of microporous BaTiO3/PDMS nanocomposites for triboelectric nanogenerators through one-step microwave irradiation, Sci. Rep., 8(2018), art. No. 14287. doi: 10.1038/s41598-018-32609-6
|
[26] |
H.G. Menge, J.O. Kim, and Y.T. Park, Enhanced triboelectric performance of modified PDMS nanocomposite multilayered nanogenerators, Materials, 13(2020), No. 18, art. No. 4156. doi: 10.3390/ma13184156
|
[27] |
D. Tantraviwat, M. Ngamyingyoud, W. Sripumkhai, P. Pattamang, G. Rujijanagul, and B. Inceesungvorn, Tuning the dielectric constant and surface engineering of a BaTiO3/porous PDMS composite film for enhanced triboelectric nanogenerator output performance, ACS Omega, 6(2021), No. 44, p. 29765. doi: 10.1021/acsomega.1c04222
|
[28] |
S. Feng, H.L. Zhang, D.L. He, et al., Synergistic effects of BaTiO3/multiwall carbon nanotube as fillers on the electrical performance of triboelectric nanogenerator based on polydimethylsiloxane composite films, Energy Technol., 7(2019), No. 6, art. No. 1900101. doi: 10.1002/ente.201900101
|
[29] |
D. Ali, B. Yu, X.C. Duan, H. Yu, and M.F. Zhu, Enhancement of output performance through post-poling technique on BaTiO3/PDMS-based triboelectric nanogenerator, Nanotechnology, 28(2017), No. 7, art. No. 075203. doi: 10.1088/1361-6528/aa52b7
|
[30] |
J.E. Chen, H.Y. Guo, X.M. He, et al., Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film, ACS Appl. Mater. Interfaces, 8(2016), No. 1, p. 736. doi: 10.1021/acsami.5b09907
|
[31] |
V. Vivekananthan, N.P.M.J. Raj, N.R. Alluri, Y. Purusothaman, A. Chandrasekhar, and S.J. Kim, Substantial improvement on electrical energy harvesting by chemically modified/sandpaper-based surface modification in micro-scale for hybrid nanogenerators, Appl. Surf. Sci., 514(2020), art. No. 145904. doi: 10.1016/j.apsusc.2020.145904
|
[32] |
G. Wang, Y. Xi, H.X. Xuan, R.C. Liu, X. Chen, and L. Cheng, Hybrid nanogenerators based on triboelectrification of a dielectric composite made of lead-free ZnSnO3 nanocubes, Nano Energy, 18(2015), p. 28. doi: 10.1016/j.nanoen.2015.09.012
|
[33] |
S. Paria, S.K. Si, S.K. Karan, et al., A strategy to develop highly efficient TENGs through the dielectric constant, internal resistance optimization, and surface modification, J. Mater. Chem. A, 7(2019), No. 8, p. 3979. doi: 10.1039/C8TA11229K
|
[34] |
M.H. Lai, L. Cheng, Y. Xi, et al., Enhancing the performance of NaNbO3 triboelectric nanogenerators by dielectric modulation and electronegative modification, J. Phys. D, 51(2018), No. 1, art. No. 015303. doi: 10.1088/1361-6463/aa9a6c
|
[35] |
J.H. Jung, C.Y. Chen, B.K. Yun, et al., Lead-free KNbO3 ferroelectric nanorod based flexible nanogenerators and capacitors, Nanotechnology, 23(2012), No. 37, art. No. 375401. doi: 10.1088/0957-4484/23/37/375401
|
[36] |
J.J. Jiao, Y.T. Su, C.Y. Wang, et al., Novel elexible friction layer constructed from ZnO in situ grown on ZnSnO3 nanocubes toward significantly enhancing output performances of a triboelectric nanogenerator, ACS Appl. Energy Mater., 6(2023), No. 3, p. 1283. doi: 10.1021/acsaem.2c03027
|
[37] |
L. Pan, J.H. Yin, J.L. Li, et al., Effect of ZrB2 nanopellets on microstructure, dielectric, mechanical and thermal stability of polyimide, High Perform. Polym., 33(2021), No. 7, p. 797. doi: 10.1177/0954008321994175
|
[38] |
V. Harnchana, H.V. Ngoc, W. He, et al., Enhanced power output of a triboelectric nanogenerator using poly(dimethylsiloxane) modified with graphene oxide and sodium dodecyl sulfate, ACS Appl. Mater. Interfaces, 10(2018), No. 30, p. 25263. doi: 10.1021/acsami.8b02495
|
[39] |
S.M. Niu, S.H. Wang, L. Lin, et al., Theoretical study of contact-mode triboelectric nanogenerators as an effective power source, Energy Environ. Sci., 6(2013), No. 12, p. 3576. doi: 10.1039/c3ee42571a
|