Chuanchang Li, Xinke Peng, Jianjun He, and Jian Chen, Modified sepiolite stabilized stearic acid as a form-stable phase change material for thermal energy storage, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1835-1845. https://doi.org/10.1007/s12613-023-2627-4
Cite this article as:
Chuanchang Li, Xinke Peng, Jianjun He, and Jian Chen, Modified sepiolite stabilized stearic acid as a form-stable phase change material for thermal energy storage, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1835-1845. https://doi.org/10.1007/s12613-023-2627-4
Research Article

Modified sepiolite stabilized stearic acid as a form-stable phase change material for thermal energy storage

+ Author Affiliations
  • Corresponding author:

    Chuanchang Li    E-mail: chuanchangli@csust.edu.cn

  • Received: 6 November 2022Revised: 8 March 2023Accepted: 9 March 2023Available online: 11 March 2023
  • Sepiolite (ST) was used as a supporting matrix in compiste phase change materials (PCMs) due to its unique microstructure, good thermal stability, and other raw material advantages. In this paper, microwave acid treatment were innovatively used for the modification of sepiolite. The modified sepiolite (STm) obtained in different hydrochloric acid concentrations (0.25, 0.5, 0.75, and 1.0 mol·L−1) was added to stearic acid (SA) via vacuum impregnation method. The thermophysical properties of the composites were changed by varying the hydrochloric acid concentration. The SA-STm0.5 obtained by microwave acid treatment at 0.5 mol·L−1 hydrochloric acid concentration showed a higher loading capacity (82.63%) than other composites according to the differential scanning calorimeter (DSC) analysis. The melting and freezing enthalpies of SA-STm0.5 were of 152.30 and 148.90 J·g−1, respectively. The thermal conductivity of SA-STm0.5 was as high as 1.52 times that of pure SA. In addition, the crystal structure, surface morphology, and microporous structure of STm were studied, and the mechanism of SA-STm0.5 performance enhancement was further revealed by Brunauere Emmett Teller (BET) analysis. Leakage experiment showed that SA-STm0.5 had a good morphological stability. These results demostrate that SA-STm0.5 has a potential application in thermal energy storage.
  • loading
  • [1]
    Y. Tian and C.Y. Zhao, A review of solar collectors and thermal energy storage in solar thermal applications, Appl. Energy, 104(2013), p. 538. doi: 10.1016/j.apenergy.2012.11.051
    [2]
    H.A. Nasef, S.A. Nada, and H. Hassan, Integrative passive and active cooling system using PCM and nanofluid for thermal regulation of concentrated photovoltaic solar cells, Energy Convers. Manage., 199(2019), art. No. 112065. doi: 10.1016/j.enconman.2019.112065
    [3]
    S.B. Subramaniam and R. Senthil, Heat transfer enhancement of concentrated solar absorber using hollow cylindrical fins filled with phase change material, Int. J. Hydrogen Energy, 46(2021), No. 43, p. 22344. doi: 10.1016/j.ijhydene.2021.04.061
    [4]
    X. Wen, J. Ji, Z.M. Li, and Z.Y. Song, Performance analysis of a concentrated system with series photovoltaic/thermal module and solar thermal collector integrated with PCM and TEG, Energy, 249(2022), art. No. 123777. doi: 10.1016/j.energy.2022.123777
    [5]
    L. Ni, D. Qv, Y. Yao, F.X. Niu, and W.J. Hu, An experimental study on performance enhancement of a PCM based solar-assisted air source heat pump system under cooling modes, Appl. Therm. Eng., 100(2016), p. 434. doi: 10.1016/j.applthermaleng.2016.02.001
    [6]
    S. Kenzhekhanov, S. Ali Memon, and I. Adilkhanova, Quantitative evaluation of thermal performance and energy saving potential of the building integrated with PCM in a subarctic climate, Energy, 192(2020), art. No. 116607. doi: 10.1016/j.energy.2019.116607
    [7]
    E. Mohseni and W. Tang, Parametric analysis and optimisation of energy efficiency of a lightweight building integrated with different configurations and types of PCM, Renewable Energy, 168(2021), p. 865. doi: 10.1016/j.renene.2020.12.112
    [8]
    N. Soares, J.J. Costa, A.R. Gaspar, and P. Santos, Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency, Energy Build., 59(2013), p. 82. doi: 10.1016/j.enbuild.2012.12.042
    [9]
    M. Sovetova, S. Ali Memon, and J. Kim, Thermal performance and energy efficiency of building integrated with PCMs in hot desert climate region, Sol. Energy, 189(2019), p. 357. doi: 10.1016/j.solener.2019.07.067
    [10]
    J.J. Cheng, S.S. Niu, M.Y. Kang, et al., The thermal behavior and flame retardant performance of phase change material microcapsules with modified carbon nanotubes, Energy, 240(2022), art. No. 122821. doi: 10.1016/j.energy.2021.122821
    [11]
    P. Cheng, K. Wei, W.S. Shi, J.H. Shi, S.F. Wang, and B. Ma, Preparation and performance analysis of phase change microcapsule/epoxy resin composite phase change material, J. Energy Storage, 47(2022), art. No. 103581. doi: 10.1016/j.est.2021.103581
    [12]
    X. Huang, C.Q. Zhu, Y.X. Lin, and G.Y. Fang, Thermal properties and applications of microencapsulated PCM for thermal energy storage: A review, Appl. Therm. Eng., 147(2019), p. 841. doi: 10.1016/j.applthermaleng.2018.11.007
    [13]
    X. Wan, H.Y. Zhang, C. Chen, R. Wang, L. Su, and B.H. Guo, Synthesis and characterization of phase change materials microcapsules with paraffin core/cross-linked hybrid polymer shell for thermal energy storage, J. Energy Storage, 32(2020), art. No. 101897. doi: 10.1016/j.est.2020.101897
    [14]
    C.C. Li, X.B. Zhao, B. Zhang, et al., Stearic acid/copper foam as composite phase change materials for thermal energy storage, J. Therm. Sci., 29(2020), No. 2, p. 492. doi: 10.1007/s11630-020-1272-8
    [15]
    P.Z. Lv, C.Z. Liu, and Z.H. Rao, Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications, Renewable Sustainable Energy Rev., 68(2017), p. 707. doi: 10.1016/j.rser.2016.10.014
    [16]
    X.B. Zhao, C.C. Li, K.H. Bai, B.S. Xie, J. Chen, Q.X. Liu. Multiple structure graphite stabilized stearic acid as composite phase change materials for thermal energy storage, Int. J. Min. Sci. Techno., 32(2022), p. 1419. doi: 10.1016/j.ijmst.2022.10.003
    [17]
    X.L. Wang, B. Li, Z.G. Qu, J.F. Zhang, and Z.G. Jin, Effects of graphite microstructure evolution on the anisotropic thermal conductivity of expanded graphite/paraffin phase change materials and their thermal energy storage performance, Int. J. Heat Mass Transf., 155(2020), art. No. 119853. doi: 10.1016/j.ijheatmasstransfer.2020.119853
    [18]
    W.J. Miao, S.L. Gan, X.G. Li, and Y. Lv, A triply synergistic method for palygorskite activation to effectively impregnate phase change materials (PCMs) for thermal energy storage, Appl. Clay Sci., 189(2020), art. No. 105530. doi: 10.1016/j.clay.2020.105530
    [19]
    C.C. Li, M.F. Wang, B.S. Xie, H. Ma, and J. Chen, Enhanced properties of diatomite-based composite phase change materials for thermal energy storage, Renewable Energy, 147(2020), p. 265. doi: 10.1016/j.renene.2019.09.001
    [20]
    J.S. Zhang, X. Zhang, Y.Z. Wan, D.D. Mei, and B. Zhang, Preparation and thermal energy properties of paraffin/halloysite nanotube composite as form-stable phase change material, Sol. Energy, 86(2012), No. 5, p. 1142. doi: 10.1016/j.solener.2012.01.002
    [21]
    P.Z. Lv, C.Z. Liu, and Z.H. Rao, Experiment study on the thermal properties of paraffin/Kaolin thermal energy storage form-stable phase change materials, Appl. Energy, 182(2016), p. 475. doi: 10.1016/j.apenergy.2016.08.147
    [22]
    D.Y. Zhang, C.C. Li, N.Z. Lin, B.S. Xie, and J. Chen, Mica-stabilized polyethylene glycol composite phase change materials for thermal energy storage, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 168. doi: 10.1007/s12613-021-2357-4
    [23]
    H. Yi, Z. Ai, Y.L. Zhao, X. Zhang, and S.X. Song, Design of 3D-network montmorillonite nanosheet/stearic acid shape-stabilized phase change materials for solar energy storage, Sol. Energy Mater. Sol. Cells, 204(2020), art. No. 110233. doi: 10.1016/j.solmat.2019.110233
    [24]
    C.C. Li, L.J. Fu, J. Ouyang, A.D. Tang, and H.M. Yang, Kaolinite stabilized paraffin composite phase change materials for thermal energy storage, Appl. Clay Sci., 115(2015), p. 212. doi: 10.1016/j.clay.2015.07.033
    [25]
    C.C. Li, L.J. Fu, J. Ouyang, and H.M. Yang, Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage, Sci. Rep., 3(2013), art. No. 1908. doi: 10.1038/srep01908
    [26]
    C.C. Li, J. Ouyang, and H.M. Yang, Novel sensible thermal storage material from natural minerals, Phys. Chem. Miner., 40(2013), No. 9, p. 681. doi: 10.1007/s00269-013-0603-7
    [27]
    M. Li, Z.S. Wu, and H.T. Kao, Study on preparation, structure and thermal energy storage property of capric-palmitic acid/attapulgite composite phase change materials, Appl. Energy, 88(2011), No. 9, p. 3125. doi: 10.1016/j.apenergy.2011.02.030
    [28]
    R.L. Wen, X.G. Zhang, Z.H. Huang, et al., Preparation and thermal properties of fatty acid/diatomite form-stable composite phase change material for thermal energy storage, Sol. Energy Mater. Sol. Cells, 178(2018), p. 273. doi: 10.1016/j.solmat.2018.01.032
    [29]
    S.K. Song, L.J. Dong, Y. Zhang, et al., Lauric acid/intercalated kaolinite as form-stable phase change material for thermal energy storage, Energy, 76(2014), p. 385. doi: 10.1016/j.energy.2014.08.042
    [30]
    W. Yin, M. Liu, Y.Y. Chen, Q.Z. Yao, S.Q. Fu, and G.T. Zhou, Microwave-assisted preparation of Mn3O4@sepiolite nanocomposite for highly efficient removal of uranium, Appl. Clay Sci., 228(2022), art. No. 106597. doi: 10.1016/j.clay.2022.106597
    [31]
    F. Zhou, C.J. Yan, Y. Zhang, et al., Purification and defibering of a Chinese sepiolite, Appl. Clay Sci., 124-125(2016), p. 119. doi: 10.1016/j.clay.2016.02.013
    [32]
    Y. Konuklu and O. Ersoy, Preparation and characterization of sepiolite-based phase change material nanocomposites for thermal energy storage, Appl. Therm. Eng., 107(2016), p. 575. doi: 10.1016/j.applthermaleng.2016.07.012
    [33]
    W.W. Cui, H.Z. Zhang, Y.P. Xia, et al., Preparation and thermophysical properties of a novel form-stable CaCl2·6H2O/sepiolite composite phase change material for latent heat storage, J. Therm. Anal. Calorim., 131(2018), No. 1, p. 57. doi: 10.1007/s10973-017-6170-2
    [34]
    A. Sarı, R.K. Sharma, G. Hekimoğlu, and V.V. Tyagi, Preparation, characterization, thermal energy storage properties and temperature control performance of form-stabilized sepiolite based composite phase change materials, Energy Build., 188-189(2019), p. 111. doi: 10.1016/j.enbuild.2019.02.008
    [35]
    Q. Shen, S.Y. Liu, J. Ouyang, and H.M. Yang, Sepiolite supported stearic acid composites for thermal energy storage, RSC Adv., 6(2016), No. 113, p. 112493. doi: 10.1039/C6RA22015K
    [36]
    Q. Shen, J. Ouyang, Y. Zhang, and H.M. Yang, Lauric acid/modified sepiolite composite as a form-stable phase change material for thermal energy storage, Appl. Clay Sci., 146(2017), p. 14. doi: 10.1016/j.clay.2017.05.035
    [37]
    Y. Luo, S.Y. Xiong, J.T. Huang, et al., Preparation, characterization and performance of paraffin/sepiolite composites as novel shape-stabilized phase change materials for thermal energy storage, Sol. Energy Mater. Sol. Cells, 231(2021), art. No. 111300. doi: 10.1016/j.solmat.2021.111300
    [38]
    C.C. Li, B.S. Xie, Z.X. He, J. Chen, and Y. Long, 3D structure fungi-derived carbon stabilized stearic acid as a composite phase change material for thermal energy storage, Renewable Energy, 140(2019), p. 862. doi: 10.1016/j.renene.2019.03.121
    [39]
    B.S. Xie, C.C. Li, J. Chen, and N. Wang, Exfoliated 2D hexagonal boron nitride nanosheet stabilized stearic acid as composite phase change materials for thermal energy storage, Sol. Energy, 204(2020), p. 624. doi: 10.1016/j.solener.2020.05.004
    [40]
    X.L. Zhang, Q.L. Lin, H.J. Luo, and S.Y. Luo, Three-dimensional graphitic hierarchical porous carbon/stearic acid composite as shape-stabilized phase change material for thermal energy storage, Appl. Energy, 260(2020), art. No. 114278. doi: 10.1016/j.apenergy.2019.114278
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(899) PDF Downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return