Xiaobin Geng, Hui Yang, Wenping Guo, Xiaotong Liu, Tao Yang,  and Jinjia Liu, Theoretical study on the morphology of cobalt nanoparticles modulated by alkali metal promoters, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 2006-2013. https://doi.org/10.1007/s12613-023-2634-5
Cite this article as:
Xiaobin Geng, Hui Yang, Wenping Guo, Xiaotong Liu, Tao Yang,  and Jinjia Liu, Theoretical study on the morphology of cobalt nanoparticles modulated by alkali metal promoters, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 2006-2013. https://doi.org/10.1007/s12613-023-2634-5
Research Article

Theoretical study on the morphology of cobalt nanoparticles modulated by alkali metal promoters

+ Author Affiliations
  • Corresponding authors:

    Tao Yang    E-mail: ytyangmei@bistu.edu.cn

    Jinjia Liu    E-mail: liujj6636@163.com

  • Received: 17 January 2023Revised: 22 March 2023Accepted: 27 March 2023Available online: 30 March 2023
  • Cobalt nanoparticles (NPs) catalysts are extensively used in heterogeneous catalytic reactions, and the addition of alkali metal promoters is a common method to modulate the catalytic performance because the catalyst’s surface structures and morphologies are sensitive to the addition of promoters. However, the underlying modulation trend remains unclear. Herein, the adsorption of alkali metal promoters (Na and K) on the surfaces of face-centered-cubic (FCC) and hexagonal-closest packed (HCP) polymorphous cobalt was systematically investigated using density functional theory. Furthermore, the effect of alkali promoters on surface energies and nanoparticle morphologies was revealed on the basis of Wulff theory. For FCC-Co, the exposed area of the (111) facet in the nanoparticle increases with the adsorption coverage of alkali metal oxide. Meanwhile, the (311), (110), and (100) facets would disappear under the higher adsorption coverage of alkali metals. For HCP-Co, the Wulff morphology is dominated by the (0001) and ($ 10\bar{1}1 $) facets and is independent of the alkali metal adsorption coverage. This work provides insights into morphology modulation by alkali metal promoters for the rational design and synthesis of cobalt-based nanomaterials with desired facets and morphologies.
  • loading
  • Supplementary Information-10.1007s12613-023-2634-5.docx
  • [1]
    H. Du, M. Jiang, M. Zhao, X.Y. Ma, Z.W. Xu, and Z.A. Zhao, Activity and selectivity enhancement of silica supported cobalt catalyst for alcohols production from syngas via Fischer–Tropsch synthesis, Int. J. Hydrogen Energy, 47(2022), No. 7, p. 4559. doi: 10.1016/j.ijhydene.2021.11.070
    [2]
    A.L.M. da Silva, J.P. den Breejen, L.V. Mattos, J.H. Bitter, K.P. de Jong, and F.B. Noronha, Cobalt particle size effects on catalytic performance for ethanol steam reforming - Smaller is better, J. Catal., 318(2014), p. 67. doi: 10.1016/j.jcat.2014.07.020
    [3]
    J. Gahtori, G. Singh, C.L. Tucker, E. van Steen, A.V. Biradar, and A. Bordoloi, Insights into promoter-enhanced aqueous phase CO hydrogenation over Co@TiO2 mesoporous nanocomposites, Fuel, 310(2022), art. No. 122402. doi: 10.1016/j.fuel.2021.122402
    [4]
    J.C. Kang, Q.Y. Fan, W. Zhou, et al., Iridium boosts the selectivity and stability of cobalt catalysts for syngas to liquid fuels, Chem, 8(2022), No. 4, p. 1050. doi: 10.1016/j.chempr.2021.12.016
    [5]
    N.A. Luechinger, R.N. Grass, E.K. Athanassiou, and W.J. Stark, Bottom-up fabrication of metal/metal nanocomposites from nanoparticles of immiscible metals, Chem. Mater., 22(2010), No. 1, p. 155. doi: 10.1021/cm902527n
    [6]
    A.A. Karimpoor and U. Erb, Mechanical properties of nanocrystalline cobalt, Phys. Status Solidi A, 203(2006), No. 6, p. 1265. doi: 10.1002/pssa.200566157
    [7]
    B. Ghasemi, R. Hosseini, and F.D. Nayeri, Effects of cobalt nanoparticles on artemisinin production and gene expression in Artemisia annua, Turk. J. Bot., 39(2015), p. 769. doi: 10.3906/bot-1410-9
    [8]
    A. Waris, M. Din, A. Ali, et al., Green fabrication of Co and Co3O4 nanoparticles and their biomedical applications: A review, Open Life Sci., 16(2021), No. 1, p. 14. doi: 10.1515/biol-2021-0003
    [9]
    Y. Yang, G.M. Zeng, D.L. Huang, et al., In situ grown single-atom cobalt on polymeric carbon nitride with bidentate ligand for efficient photocatalytic degradation of refractory antibiotics, Small, 16(2020), No. 29, art. No. 2001634. doi: 10.1002/smll.202001634
    [10]
    Y.P. Bao and K.M. Krishnan, Preparation of functionalized and gold-coated cobalt nanocrystals for biomedical applications, J. Magn. Magn. Mater., 293(2005), No. 1, p. 15. doi: 10.1016/j.jmmm.2005.01.037
    [11]
    R. Xu, D.S. Wang, J.T. Zhang, and Y.D. Li, Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene, Chem. Asian J., 1(2006), No. 6, p. 888. doi: 10.1002/asia.200600260
    [12]
    J. Gu, Y. Guo, Y.Y. Jiang, et al., Robust phase control through hetero-seeded epitaxial growth for face-centered cubic Pt@Ru nanotetrahedrons with superior hydrogen electro-oxidation activity, J. Phys. Chem. C, 119(2015), No. 31, p. 17697. doi: 10.1021/acs.jpcc.5b04587
    [13]
    D.C. Sorescu, Adsorption and activation of CO coadsorbed with K on Fe(100) surface: A plane-wave DFT study, Surf. Sci., 605(2011), No. 3-4, p. 401. doi: 10.1016/j.susc.2010.11.009
    [14]
    W.D. Mross, Alkali doping in heterogeneous catalysis, Catal. Rev. Sci. Eng., 25(1983), No. 4, p. 591. doi: 10.1080/01614948308078057
    [15]
    T.S. Rahman, S. Stolbov, and F. Mehmood, Alkali-induced effects on metal substrates and coadsorbed molecules, Appl. Phys. A, 87(2007), No. 3, p. 367. doi: 10.1007/s00339-007-3964-2
    [16]
    Z.P. Liu and P. Hu, An insight into alkali promotion: A density functional theory study of CO dissociation on K/Rh(111), J. Am. Chem. Soc., 123(2001), No. 50, p. 12596. doi: 10.1021/ja011446y
    [17]
    S.J. Jenkins and D.A. King, A role for induced molecular polarization in catalytic promotion: CO coadsorbed with K on Co{$ 10\bar{1}0 $}, J. Am. Chem. Soc., 122(2000), No. 43, p. 10610. doi: 10.1021/ja0004985
    [18]
    C. Zhang, S.G. Li, L.S. Zhong, and Y.H. Sun, Theoretical insights into morphologies of alkali-promoted cobalt carbide catalysts for Fischer–Tropsch synthesis, J. Phys. Chem. C, 125(2021), No. 11, p. 6061. doi: 10.1021/acs.jpcc.0c09164
    [19]
    C.F. Huo, B.S. Wu, P. Gao, Y. Yang, Y.W. Li, and H.J. Jiao, The mechanism of potassium promoter: Enhancing the stability of active surfaces, Angew. Chem. Int. Ed., 50(2011), No. 32, p. 7403. doi: 10.1002/anie.201007484
    [20]
    T. Wang, X.X. Tian, Y.W. Li, J.G. Wang, M. Beller, and H.J. Jiao, Coverage-dependent CO adsorption and dissociation mechanisms on iron surfaces from DFT computations, ACS Catal., 4(2014), No. 6, p. 1991. doi: 10.1021/cs500287r
    [21]
    M.K. Gnanamani, G. Jacobs, W.D. Shafer, and B.H. Davis, Fischer–Tropsch synthesis: Activity of metallic phases of cobalt supported on silica, Catal. Today, 215(2013), p. 13. doi: 10.1016/j.cattod.2013.03.004
    [22]
    M. Sadeqzadeh, H. Karaca, O.V. Safonova, et al., Identification of the active species in the working alumina-supported cobalt catalyst under various conditions of Fischer–Tropsch synthesis, Catal. Today, 164(2011), No. 1, p. 62. doi: 10.1016/j.cattod.2010.12.035
    [23]
    A.H. Lillebø, E. Patanou, J. Yang, E.A. Blekkan, and A. Holmen, The effect of alkali and alkaline earth elements on cobalt based Fischer–Tropsch catalysts, Catal. Today, 215(2013), p. 60. doi: 10.1016/j.cattod.2013.03.030
    [24]
    L. Chen, G.X. Song, Y.C. Fu, and J.Y. Shen, The effects of promoters of K and Zr on the mesoporous carbon supported cobalt catalysts for Fischer–Tropsch synthesis, J. Colloid Interface Sci., 368(2012), No. 1, p. 456. doi: 10.1016/j.jcis.2011.11.030
    [25]
    Z.M. Zhang, X. Zhang, L.J. Zhang, et al., Impacts of alkali or alkaline earth metals addition on reaction intermediates formed in methanation of CO2 over cobalt catalysts, J. Energy Inst., 93(2020), No. 4, p. 1581. doi: 10.1016/j.joei.2020.01.020
    [26]
    E. Patanou, A.H. Lillebø, J.A. Yang, D. Chen, A. Holmen, and E.A. Blekkan, Microcalorimetric studies on Co–Re/γ-Al2O3 catalysts with Na impurities for Fischer–Tropsch synthesis, Ind. Eng. Chem. Res., 53(2014), No. 5, p. 1787. doi: 10.1021/ie402465z
    [27]
    T. Ishida, T. Yanagihara, X.H. Liu, et al., Synthesis of higher alcohols by Fischer–Tropsch synthesis over alkali metal-modified cobalt catalysts, Appl. Catal. A, 458(2013), p. 145. doi: 10.1016/j.apcata.2013.03.042
    [28]
    G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6(1996), No. 1, p. 15. doi: 10.1016/0927-0256(96)00008-0
    [29]
    G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54(1996), No. 16, p. 11169. doi: 10.1103/PhysRevB.54.11169
    [30]
    J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865. doi: 10.1103/PhysRevLett.77.3865
    [31]
    G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59(1999), No. 3, p. 1758. doi: 10.1103/PhysRevB.59.1758
    [32]
    M. Methfessel and A.T. Paxton, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B, 40(1989), No. 6, p. 3616. doi: 10.1103/PhysRevB.40.3616
    [33]
    G. Pirug, G. Brodén, and H.P. Bonzel, Coadsorption of potassium and oxygen on Fe(110), Surf. Sci., 94(1980), No. 2-3, p. 323. doi: 10.1016/0039-6028(80)90010-2
    [34]
    Z. Paál, G. Ertl, and S.B. Lee, Interactions of potassium, oxygen and nitrogen with polycrystalline iron surfaces, Appl. Surf. Sci., 8(1981), No. 3, p. 231. doi: 10.1016/0378-5963(81)90119-7
    [35]
    P. Zhao, Z. Cao, X.C. Liu, et al., Morphology and reactivity evolution of HCP and FCC Ru nanoparticles under CO atmosphere, ACS Catal., 9(2019), No. 4, p. 2768. doi: 10.1021/acscatal.8b05074
    [36]
    S. Zhao, X.W. Liu, C.F. Huo, Y.W. Li, J.G. Wang, and H.J. Jiao, Surface morphology of Hägg iron carbide (χ-Fe5C2) from ab initio atomistic thermodynamics, J. Catal., 294(2012), p. 47. doi: 10.1016/j.jcat.2012.07.003
    [37]
    X.B. Geng, J.J. Liu, H. Yang, W.P. Guo, J. Bai, and X.D. Wen, Surface morphology evolution of cobalt nanoparticles induced by hydrogen adsorption: A theoretical study, New J. Chem., 46(2022), No. 19, p. 9272. doi: 10.1039/D2NJ00356B
    [38]
    G.D. Barmparis, Z. Lodziana, N. Lopez, and I.N. Remediakis, Nanoparticle shapes by using Wulff constructions and first-principles calculations, Beilstein J. Nanotechnol., 6(2015), p. 361. doi: 10.3762/bjnano.6.35
    [39]
    H. Lin, J.X. Liu, H.J. Fan, and W.X. Li, Compensation between surface energy and hcp/fcc phase energy of late transition metals from first-principles calculations, J. Phys. Chem. C, 124(2020), No. 20, p. 11005. doi: 10.1021/acs.jpcc.0c02142
    [40]
    J.X. Liu, H.Y. Su, D.P. Sun, B.Y. Zhang, and W.X. Li, Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC, J. Am. Chem. Soc., 135(2013), No. 44, p. 16284. doi: 10.1021/ja408521w
    [41]
    H. Lin, J.X. Liu, H.J. Fan, and W.X. Li, Morphology evolution of FCC and HCP cobalt induced by a CO atmosphere from ab initio thermodynamics, J. Phys. Chem. C, 124(2020), No. 42, p. 23200. doi: 10.1021/acs.jpcc.0c07386
    [42]
    L.L. Liu, M.T. Yu, Q. Wang, et al., Theoretically predicted surface morphology of FCC cobalt nanoparticles induced by Ru promoter, Catal. Sci. Technol., 10(2020), No. 1, p. 187. doi: 10.1039/C9CY01892A
    [43]
    O.L. Eliseev, M.V. Tsapkina, O.S. Dement’eva, P.E. Davydov, A.V. Kazakov, and A.L. Lapidus, Promotion of cobalt catalysts for the Fischer–Tropsch synthesis with alkali metals, Kinet. Catal., 54(2013), No. 2, p. 207. doi: 10.1134/S0023158413020055
    [44]
    J.X. Liu, H.Y. Su, and W.X. Li, Structure sensitivity of CO methanation on Co (0001), ($ 10\bar{1}2 $) and ($ 11\bar{2}0 $) surfaces: Density functional theory calculations, Catal. Today, 215(2013), p. 36. doi: 10.1016/j.cattod.2013.04.024
    [45]
    A.M. Saib, D.J. Moodley, I.M. Ciobîcă, et al., Fundamental understanding of deactivation and regeneration of cobalt Fischer–Tropsch synthesis catalysts, Catal. Today, 154(2010), No. 3-4, p. 271. doi: 10.1016/j.cattod.2010.02.008
    [46]
    R.G. Zhang, L. Kang, H.X. Liu, B.J. Wang, D.B. Li, and M.H. Fan, Crystal facet dependence of carbon chain growth mechanism over the HCP and FCC Co catalysts in the Fischer–Tropsch synthesis, Appl. Catal. B, 269(2020), art. No. 118847. doi: 10.1016/j.apcatb.2020.118847
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(558) PDF Downloads(24) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return