Hongyuan Liu, Jialei Wu, Siqi Wang, Jing Duan, and Huiping Shao, Effect of Sr2+ on 3D gel-printed Sr3−xMgx(PO4)2 composite scaffolds for bone tissue engineering, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2236-2244. https://doi.org/10.1007/s12613-023-2638-1
Cite this article as:
Hongyuan Liu, Jialei Wu, Siqi Wang, Jing Duan, and Huiping Shao, Effect of Sr2+ on 3D gel-printed Sr3−xMgx(PO4)2 composite scaffolds for bone tissue engineering, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2236-2244. https://doi.org/10.1007/s12613-023-2638-1
Research Article

Effect of Sr2+ on 3D gel-printed Sr3−xMgx(PO4)2 composite scaffolds for bone tissue engineering

+ Author Affiliations
  • Corresponding author:

    Huiping Shao    E-mail: shaohp@ustb.edu.cn

  • Received: 17 January 2023Revised: 17 March 2023Accepted: 29 March 2023Available online: 30 March 2023
  • Porous magnesium strontium phosphate (Sr3−xMgx(PO4)2) (x = 2, 2.5, 3) composite scaffolds were successfully prepared by three dimension gel-printing (3DGP) method in this study. The results show that Sr0.5Mg2.5(PO4)2 scaffolds had good compressive strength, and Sr1.0Mg2.0(PO4)2 scaffolds had good degradation rate in vitro. The weight loss rate of Sr1.0Mg2.0(PO4)2 scaffolds soaked in simulated body fluid (SBF) or 6 weeks was 6.96%, and pH value varied between 7.50 and 8.61, which was within the acceptable range of human body. Preliminary biological experiment shows that MC3T3-E1 cells had good adhesion and proliferation on the surface of Sr3−xMgx(PO4)2 scaffolds. Compared with pure Mg3(PO4)2 scaffolds, strontium doped scaffolds had excellent comprehensive properties, which explain that Sr3−xMgx(PO4)2 composite scaffolds can be used for bone tissue engineering.
  • loading
  • [1]
    C. Wang, W. Huang, Y. Zhou, et al., 3D printing of bone tissue engineering scaffolds, Bioact. Mater., 5(2020), No. 1, p. 82. doi: 10.1016/j.bioactmat.2020.01.004
    [2]
    H.S. Ma, C. Feng, J. Chang, and C.T. Wu, 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy, Acta Biomater., 79(2018), p. 37. doi: 10.1016/j.actbio.2018.08.026
    [3]
    P.Y. Zhao, Y.Q. Liu, T.A. Li, et al., 3D printed titanium scaffolds with ordered TiO2 nanotubular surface and mesoporous bioactive glass for bone repair, Prog. Nat. Sci., 30(2020), No. 4, p. 502. doi: 10.1016/j.pnsc.2020.08.009
    [4]
    R. Han, F. Buchanan, L. Ford, M. Julius, and P.J. Walsh, A comparison of the degradation behaviour of 3D printed PDLGA scaffolds incorporating bioglass or biosilica, Mater. Sci. Eng. C, 120(2021), art. No. 111755. doi: 10.1016/j.msec.2020.111755
    [5]
    M. Touri, F. Moztarzadeh, N.A. Abu Osman, M.M. Dehghan, and M. Mozafari, 3D-printed biphasic calcium phosphate scaffolds coated with an oxygen generating system for enhancing engineered tissue survival, Mater. Sci. Eng. C, 84(2018), p. 236. doi: 10.1016/j.msec.2017.11.037
    [6]
    J. Babilotte, B. Martin, V. Guduric, et al., Development and characterization of a PLGA-HA composite material to fabricate 3D-printed scaffolds for bone tissue engineering, Mater. Sci. Eng. C, 118(2021), art. No. 111334. doi: 10.1016/j.msec.2020.111334
    [7]
    S. Liu, L.N. Mo, G.Y. Bi, et al., DLP 3D printing porous β-tricalcium phosphate scaffold by the use of acrylate/ceramic composite slurry, Ceram. Int., 47(2021), No. 15, p. 21108. doi: 10.1016/j.ceramint.2021.04.114
    [8]
    A.C. Zou, H.X. Liang, C. Jiao, et al., Fabrication and properties of CaSiO3/Sr3(PO4)2 composite scaffold based on extrusion deposition, Ceram. Int., 47(2021), No. 4, p. 4783. doi: 10.1016/j.ceramint.2020.10.048
    [9]
    N. Kunwong, N. Tangjit, K. Rattanapinyopituk, et al., Optimization of poly (lactic-co-glycolic acid)-bioactive glass composite scaffold for bone tissue engineering using stem cells from human exfoliated deciduous teeth, Arch. Oral Biol., 123(2021), art. No. 105041. doi: 10.1016/j.archoralbio.2021.105041
    [10]
    L. Zhang, G.J. Yang, B.N. Johnson, and X.F. Jia, Three-dimensional (3D) printed scaffold and material selection for bone repair, Acta Biomater., 84(2019), p. 16. doi: 10.1016/j.actbio.2018.11.039
    [11]
    M.A. Haque and B. Chen, Research progresses on magnesium phosphate cement: A review, Constr. Build. Mater., 211(2019), p. 885. doi: 10.1016/j.conbuildmat.2019.03.304
    [12]
    K. Sarkar, M. Rahaman, S. Agarwal, et al., Degradability and in vivo biocompatibility of doped magnesium phosphate bioceramic scaffolds, Mater. Lett., 259(2020), art. No. 126892. doi: 10.1016/j.matlet.2019.126892
    [13]
    D. Pierantozzi, A. Scalzone, S. Jindal, et al., 3D printed Sr-containing composite scaffolds: Effect of structural design and material formulation towards new strategies for bone tissue engineering, Compos. Sci. Technol., 191(2020), art. No. 108069. doi: 10.1016/j.compscitech.2020.108069
    [14]
    N.Y. Zhong and L.P. Wang, Research progress in the osteogenetic mechanism of strontium, West China J. Stomatology, 38(2020), No. 6, p. 697. doi: 10.7518/hxkq.2020.06.016
    [15]
    S. Meininger, S. Mandal, A. Kumar, J. Groll, B. Basu, and U. Gbureck, Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds, Acta Biomater., 31(2016), p. 401. doi: 10.1016/j.actbio.2015.11.050
    [16]
    F.P. He, T.L. Lu, X.B. Fang, et al., Study on MgxSr3−x(PO4)2 bioceramics as potential bone grafts, Colloids Surf. B, 175(2019), p. 158. doi: 10.1016/j.colsurfb.2018.11.085
    [17]
    N. Golafshan, E. Vorndran, S. Zaharievski, et al., Tough magnesium phosphate-based 3D-printed implants induce bone regeneration in an equine defect model, Biomaterials, 261(2020), art. No. 120302. doi: 10.1016/j.biomaterials.2020.120302
    [18]
    S. Meininger, C. Moseke, K. Spatz, et al., Effect of strontium substitution on the material properties and osteogenic potential of 3D powder printed magnesium phosphate scaffolds, Mater. Sci. Eng. C, 98(2019), p. 1145. doi: 10.1016/j.msec.2019.01.053
    [19]
    S.Y. Li, X.M. Pu, X.C. Chen, X.M. Liao, Z.B. Huang, and G.F. Yin, A novel bi-phase Sr-doped magnesium phosphate/calcium silicate composite scaffold and its osteogenesis promoting effect, Ceram. Int., 44(2018), No. 14, p. 16237. doi: 10.1016/j.ceramint.2018.06.009
    [20]
    K. Sarkar, V. Kumar, K.B. Devi, D. Ghosh, S.K. Nandi, and M. Roy, Effects of Sr doping on biodegradation and bone regeneration of magnesium phosphate bioceramics, Materialia, 5(2019), art. No. 100211. doi: 10.1016/j.mtla.2019.100211
    [21]
    F.P. He, T.L. Lu, X.B. Fang, et al., Effects of strontium amount on the mechanical strength and cell-biological performance of magnesium-strontium phosphate bioceramics for bone regeneration, Mater. Sci. Eng. C, 112(2020), art. No. 110892. doi: 10.1016/j.msec.2020.110892
    [22]
    N. Abbasi, S. Hamlet, R.M. Love, and N.T. Nguyen, Porous scaffolds for bone regeneration, J. Sci.:Adv. Mater. Devices, 5(2020), No. 1, p. 1.
    [23]
    M.V. Varma, B. Kandasubramanian, and S.M. Ibrahim, 3D printed scaffolds for biomedical applications, Mater. Chem. Phys., 255(2020), art. No. 123642. doi: 10.1016/j.matchemphys.2020.123642
    [24]
    H. Jodati, B. Yılmaz, and Z. Evis, A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features, Ceram. Int., 46(2020), No. 10, p. 15725. doi: 10.1016/j.ceramint.2020.03.192
    [25]
    X.Y. Ren, H.P. Shao, T. Lin, and H. Zheng, 3D gel-printing—An additive manufacturing method for producing complex shape parts, Mater. Des., 101(2016), p. 80. doi: 10.1016/j.matdes.2016.03.152
    [26]
    H.P. Shao, J.Z. He, T. Lin, Z.N. Zhang, Y.M. Zhang, and S.W. Liu, 3D gel-printing of hydroxyapatite scaffold for bone tissue engineering, Ceram. Int., 45(2019), No. 1, p. 1163. doi: 10.1016/j.ceramint.2018.09.300
    [27]
    Z.N. Zhang, H.P. Shao, T. Lin, Y.M. Zhang, J.Z. He, and L.H. Wang, 3D gel printing of porous calcium silicate scaffold for bone tissue engineering, J. Mater. Sci., 54(2019), No. 14, p. 10430. doi: 10.1007/s10853-019-03626-1
    [28]
    Y.M. Zhang, H.P. Shao, T. Lin, et al., Effect of Ca/P ratios on porous calcium phosphate salt bioceramic scaffolds for bone engineering by 3D gel-printing method, Ceram. Int., 45(2019), No. 16, p. 20493. doi: 10.1016/j.ceramint.2019.07.028
    [29]
    C.G. Chen, J.L. Wu, S.Q. Wang, and H.P. Shao, Effect of Fe3O4 concentration on 3D gel-printed Fe3O4/CaSiO3 composite scaffolds for bone engineering, Ceram. Int., 47(2021), No. 15, p. 21038. doi: 10.1016/j.ceramint.2021.04.105
    [30]
    Z.N. Zhang, T. Lin, H.P. Shao, et al., Effect of different dopants on porous calcium silicate composite bone scaffolds by 3D gel-printing, Ceram. Int., 46(2020), No. 1, p. 325. doi: 10.1016/j.ceramint.2019.08.266
    [31]
    Y.H. Shen, W. Liu, C.Y. Wen, et al., Bone regeneration: Importance of local pH–strontium-doped borosilicate scaffold, J. Mater. Chem., 22(2012), No. 17, p. 8662. doi: 10.1039/c2jm16141a
    [32]
    H.P. Shao, Y.M. Zhang, T. Lin, et al., Effect of Mg2+ on porous MgxCa3−x(PO4)2 composite scaffolds for bone engineering by 3D gel-printing, J. Mater. Sci., 55(2020), No. 18, p. 7870. doi: 10.1007/s10853-020-04590-x
    [33]
    R. Moonesi Rad, D. Atila, Z. Evis, D. Keskin, and A. Tezcaner, Development of a novel functionally graded membrane containing boron-modified bioactive glass nanoparticles for guided bone regeneration, J. Tissue Eng. Regen. Med., 13(2019), No. 8, p. 1331. doi: 10.1002/term.2877
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(1171) PDF Downloads(18) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return