Cite this article as: |
Hongyuan Liu, Jialei Wu, Siqi Wang, Jing Duan, and Huiping Shao, Effect of Sr2+ on 3D gel-printed Sr3−xMgx(PO4)2 composite scaffolds for bone tissue engineering, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2236-2244. https://doi.org/10.1007/s12613-023-2638-1 |
Huiping Shao E-mail: shaohp@ustb.edu.cn
[1] |
C. Wang, W. Huang, Y. Zhou, et al., 3D printing of bone tissue engineering scaffolds, Bioact. Mater., 5(2020), No. 1, p. 82. doi: 10.1016/j.bioactmat.2020.01.004
|
[2] |
H.S. Ma, C. Feng, J. Chang, and C.T. Wu, 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy, Acta Biomater., 79(2018), p. 37. doi: 10.1016/j.actbio.2018.08.026
|
[3] |
P.Y. Zhao, Y.Q. Liu, T.A. Li, et al., 3D printed titanium scaffolds with ordered TiO2 nanotubular surface and mesoporous bioactive glass for bone repair, Prog. Nat. Sci., 30(2020), No. 4, p. 502. doi: 10.1016/j.pnsc.2020.08.009
|
[4] |
R. Han, F. Buchanan, L. Ford, M. Julius, and P.J. Walsh, A comparison of the degradation behaviour of 3D printed PDLGA scaffolds incorporating bioglass or biosilica, Mater. Sci. Eng. C, 120(2021), art. No. 111755. doi: 10.1016/j.msec.2020.111755
|
[5] |
M. Touri, F. Moztarzadeh, N.A. Abu Osman, M.M. Dehghan, and M. Mozafari, 3D-printed biphasic calcium phosphate scaffolds coated with an oxygen generating system for enhancing engineered tissue survival, Mater. Sci. Eng. C, 84(2018), p. 236. doi: 10.1016/j.msec.2017.11.037
|
[6] |
J. Babilotte, B. Martin, V. Guduric, et al., Development and characterization of a PLGA-HA composite material to fabricate 3D-printed scaffolds for bone tissue engineering, Mater. Sci. Eng. C, 118(2021), art. No. 111334. doi: 10.1016/j.msec.2020.111334
|
[7] |
S. Liu, L.N. Mo, G.Y. Bi, et al., DLP 3D printing porous β-tricalcium phosphate scaffold by the use of acrylate/ceramic composite slurry, Ceram. Int., 47(2021), No. 15, p. 21108. doi: 10.1016/j.ceramint.2021.04.114
|
[8] |
A.C. Zou, H.X. Liang, C. Jiao, et al., Fabrication and properties of CaSiO3/Sr3(PO4)2 composite scaffold based on extrusion deposition, Ceram. Int., 47(2021), No. 4, p. 4783. doi: 10.1016/j.ceramint.2020.10.048
|
[9] |
N. Kunwong, N. Tangjit, K. Rattanapinyopituk, et al., Optimization of poly (lactic-co-glycolic acid)-bioactive glass composite scaffold for bone tissue engineering using stem cells from human exfoliated deciduous teeth, Arch. Oral Biol., 123(2021), art. No. 105041. doi: 10.1016/j.archoralbio.2021.105041
|
[10] |
L. Zhang, G.J. Yang, B.N. Johnson, and X.F. Jia, Three-dimensional (3D) printed scaffold and material selection for bone repair, Acta Biomater., 84(2019), p. 16. doi: 10.1016/j.actbio.2018.11.039
|
[11] |
M.A. Haque and B. Chen, Research progresses on magnesium phosphate cement: A review, Constr. Build. Mater., 211(2019), p. 885. doi: 10.1016/j.conbuildmat.2019.03.304
|
[12] |
K. Sarkar, M. Rahaman, S. Agarwal, et al., Degradability and in vivo biocompatibility of doped magnesium phosphate bioceramic scaffolds, Mater. Lett., 259(2020), art. No. 126892. doi: 10.1016/j.matlet.2019.126892
|
[13] |
D. Pierantozzi, A. Scalzone, S. Jindal, et al., 3D printed Sr-containing composite scaffolds: Effect of structural design and material formulation towards new strategies for bone tissue engineering, Compos. Sci. Technol., 191(2020), art. No. 108069. doi: 10.1016/j.compscitech.2020.108069
|
[14] |
N.Y. Zhong and L.P. Wang, Research progress in the osteogenetic mechanism of strontium, West China J. Stomatology, 38(2020), No. 6, p. 697. doi: 10.7518/hxkq.2020.06.016
|
[15] |
S. Meininger, S. Mandal, A. Kumar, J. Groll, B. Basu, and U. Gbureck, Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds, Acta Biomater., 31(2016), p. 401. doi: 10.1016/j.actbio.2015.11.050
|
[16] |
F.P. He, T.L. Lu, X.B. Fang, et al., Study on MgxSr3−x(PO4)2 bioceramics as potential bone grafts, Colloids Surf. B, 175(2019), p. 158. doi: 10.1016/j.colsurfb.2018.11.085
|
[17] |
N. Golafshan, E. Vorndran, S. Zaharievski, et al., Tough magnesium phosphate-based 3D-printed implants induce bone regeneration in an equine defect model, Biomaterials, 261(2020), art. No. 120302. doi: 10.1016/j.biomaterials.2020.120302
|
[18] |
S. Meininger, C. Moseke, K. Spatz, et al., Effect of strontium substitution on the material properties and osteogenic potential of 3D powder printed magnesium phosphate scaffolds, Mater. Sci. Eng. C, 98(2019), p. 1145. doi: 10.1016/j.msec.2019.01.053
|
[19] |
S.Y. Li, X.M. Pu, X.C. Chen, X.M. Liao, Z.B. Huang, and G.F. Yin, A novel bi-phase Sr-doped magnesium phosphate/calcium silicate composite scaffold and its osteogenesis promoting effect, Ceram. Int., 44(2018), No. 14, p. 16237. doi: 10.1016/j.ceramint.2018.06.009
|
[20] |
K. Sarkar, V. Kumar, K.B. Devi, D. Ghosh, S.K. Nandi, and M. Roy, Effects of Sr doping on biodegradation and bone regeneration of magnesium phosphate bioceramics, Materialia, 5(2019), art. No. 100211. doi: 10.1016/j.mtla.2019.100211
|
[21] |
F.P. He, T.L. Lu, X.B. Fang, et al., Effects of strontium amount on the mechanical strength and cell-biological performance of magnesium-strontium phosphate bioceramics for bone regeneration, Mater. Sci. Eng. C, 112(2020), art. No. 110892. doi: 10.1016/j.msec.2020.110892
|
[22] |
N. Abbasi, S. Hamlet, R.M. Love, and N.T. Nguyen, Porous scaffolds for bone regeneration, J. Sci.:Adv. Mater. Devices, 5(2020), No. 1, p. 1.
|
[23] |
M.V. Varma, B. Kandasubramanian, and S.M. Ibrahim, 3D printed scaffolds for biomedical applications, Mater. Chem. Phys., 255(2020), art. No. 123642. doi: 10.1016/j.matchemphys.2020.123642
|
[24] |
H. Jodati, B. Yılmaz, and Z. Evis, A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features, Ceram. Int., 46(2020), No. 10, p. 15725. doi: 10.1016/j.ceramint.2020.03.192
|
[25] |
X.Y. Ren, H.P. Shao, T. Lin, and H. Zheng, 3D gel-printing—An additive manufacturing method for producing complex shape parts, Mater. Des., 101(2016), p. 80. doi: 10.1016/j.matdes.2016.03.152
|
[26] |
H.P. Shao, J.Z. He, T. Lin, Z.N. Zhang, Y.M. Zhang, and S.W. Liu, 3D gel-printing of hydroxyapatite scaffold for bone tissue engineering, Ceram. Int., 45(2019), No. 1, p. 1163. doi: 10.1016/j.ceramint.2018.09.300
|
[27] |
Z.N. Zhang, H.P. Shao, T. Lin, Y.M. Zhang, J.Z. He, and L.H. Wang, 3D gel printing of porous calcium silicate scaffold for bone tissue engineering, J. Mater. Sci., 54(2019), No. 14, p. 10430. doi: 10.1007/s10853-019-03626-1
|
[28] |
Y.M. Zhang, H.P. Shao, T. Lin, et al., Effect of Ca/P ratios on porous calcium phosphate salt bioceramic scaffolds for bone engineering by 3D gel-printing method, Ceram. Int., 45(2019), No. 16, p. 20493. doi: 10.1016/j.ceramint.2019.07.028
|
[29] |
C.G. Chen, J.L. Wu, S.Q. Wang, and H.P. Shao, Effect of Fe3O4 concentration on 3D gel-printed Fe3O4/CaSiO3 composite scaffolds for bone engineering, Ceram. Int., 47(2021), No. 15, p. 21038. doi: 10.1016/j.ceramint.2021.04.105
|
[30] |
Z.N. Zhang, T. Lin, H.P. Shao, et al., Effect of different dopants on porous calcium silicate composite bone scaffolds by 3D gel-printing, Ceram. Int., 46(2020), No. 1, p. 325. doi: 10.1016/j.ceramint.2019.08.266
|
[31] |
Y.H. Shen, W. Liu, C.Y. Wen, et al., Bone regeneration: Importance of local pH–strontium-doped borosilicate scaffold, J. Mater. Chem., 22(2012), No. 17, p. 8662. doi: 10.1039/c2jm16141a
|
[32] |
H.P. Shao, Y.M. Zhang, T. Lin, et al., Effect of Mg2+ on porous MgxCa3−x(PO4)2 composite scaffolds for bone engineering by 3D gel-printing, J. Mater. Sci., 55(2020), No. 18, p. 7870. doi: 10.1007/s10853-020-04590-x
|
[33] |
R. Moonesi Rad, D. Atila, Z. Evis, D. Keskin, and A. Tezcaner, Development of a novel functionally graded membrane containing boron-modified bioactive glass nanoparticles for guided bone regeneration, J. Tissue Eng. Regen. Med., 13(2019), No. 8, p. 1331. doi: 10.1002/term.2877
|