Cite this article as: |
Tao Wei, Qi Zhang, Sijia Wang, Mengting Wang, Ye Liu, Cheng Sun, Yanyan Zhou, Qing Huang, Xiangyun Qiu, and Fang Tian, A gel polymer electrolyte with IL@UiO-66-NH2 as fillers for high-performance all-solid-state lithium metal batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1897-1905. https://doi.org/10.1007/s12613-023-2639-0 |
Tao Wei E-mail: wt863@just.edu.cn
Supplementary Information-10.1007s12613-023-2639-0.docx |
[1] |
M.S. Balogun, W.T. Qiu, Y. Luo, et al., A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials, Nano Res., 9(2016), No. 10, p. 2823. doi: 10.1007/s12274-016-1171-1
|
[2] |
J. Liu, Z.N. Bao, Y. Cui, et al., Pathways for practical high-energy long-cycling lithium metal batteries, Nat. Energy, 4(2019), No. 3, p. 180. doi: 10.1038/s41560-019-0338-x
|
[3] |
Y. Wang, W.D. Richards, S.P. Ong, et al., Design principles for solid-state lithium superionic conductors, Nat. Mater., 14(2015), No. 10, p. 1026. doi: 10.1038/nmat4369
|
[4] |
C. Yu, S. Ganapathy, E.R.H. van Eck, et al., Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface, Nat. Commun., 8(2017), No. 1, art. No. 1086. doi: 10.1038/s41467-017-01187-y
|
[5] |
Y.L. Zhao, X.Z. Yuan, L.B. Jiang, et al., Regeneration and reutilization of cathode materials from spent lithium-ion batteries, Chem. Eng. J., 383(2020), art. No. 123089. doi: 10.1016/j.cej.2019.123089
|
[6] |
T. Wei, Z.H. Zhang, Z.Y. Zhu, et al., Recycling of waste plastics and scalable preparation of Si/CNF/C composite as anode material for lithium-ion batteries, Ionics, 25(2019), No. 4, p. 1523. doi: 10.1007/s11581-019-02892-y
|
[7] |
J.B. Zhou, P. Chen, W. Wang, and X. Zhang, Li7P3S11 electrolyte for all-solid-state lithium-ion batteries: Structure, synthesis, and applications, Chem. Eng. J., 446(2022), art. No. 137041. doi: 10.1016/j.cej.2022.137041
|
[8] |
F.Y. Wang, Y.S. Ye, Z.M. Wang, et al., MOF-derived Co3O4@rGO nanocomposites as anodes for high-performance lithium-ion batteries, Ionics, 27(2021), No. 10, p. 4197. doi: 10.1007/s11581-021-04225-4
|
[9] |
T. Wei, Y.Y. Zhou, C. Sun, et al., Prestoring lithium into SnO2 coated 3D carbon fiber cloth framework as dendrite-free lithium metal anode, Particuology, 84(2024), p. 89. doi: 10.1016/j.partic.2023.03.008
|
[10] |
Z.H. Chen, I. Belharouak, Y.K. Sun, and K. Amine, Titanium-based anode materials for safe lithium-ion batteries, Adv. Funct. Mater., 23(2013), No. 8, p. 959. doi: 10.1002/adfm.201200698
|
[11] |
Z.H. Gao, S. Rao, T.Y. Zhang, et al., Design strategies of flame-retardant additives for lithium ion electrolyte, J. Electrochem. Energy Convers. Storage, 19(2022), No. 3, art. No. 030910. doi: 10.1115/1.4053968
|
[12] |
L.P. Zhang, X.L. Li, M.R. Yang, and W.H. Chen, High-safety separators for lithium-ion batteries and sodium-ion batteries: Advances and perspective, Energy Storage Mater., 41(2021), p. 522. doi: 10.1016/j.ensm.2021.06.033
|
[13] |
Z.H. Zhang, T. Wei, J.H. Lu, et al., Practical development and challenges of garnet-structured Li7La3Zr2O12 electrolytes for all-solid-state lithium-ion batteries: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1565. doi: 10.1007/s12613-020-2239-1
|
[14] |
D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, and G.X. Wang, Polymer electrolytes for lithium-based batteries: Advances and prospects, Chem, 5(2019), No. 9, p. 2326. doi: 10.1016/j.chempr.2019.05.009
|
[15] |
J.H. Lu, Z.M. Wang, Q. Zhang, et al., The effects of amino groups and open metal sites of MOFs on polymer-based electrolytes for all-solid-state lithium metal batteries, Chin. J. Chem. Eng., (2023)
|
[16] |
Z.F. Ruan, Y.Z. Du, H.F. Pan, et al., Incorporation of poly(ionic liquid) with PVDF-HFP-based polymer electrolyte for all-solid-state lithium-ion batteries, Polymers, 14(2022), No. 10, art. No. 1950. doi: 10.3390/polym14101950
|
[17] |
X.X. Wu, K.Y. Chen, Z.G. Yao, et al., Metal organic framework reinforced polymer electrolyte with high cation transference number to enable dendrite-free solid state Li metal conversion batteries, J. Power Sources, 501(2021), art. No. 229946. doi: 10.1016/j.jpowsour.2021.229946
|
[18] |
Z.L. Xiao, T.Y. Long, L.B. Song, Y.H. Zheng, and C. Wang, Research progress of polymer-inorganic filler solid composite electrolyte for lithium-ion batteries, Ionics, 28(2022), No. 1, p. 15. doi: 10.1007/s11581-021-04340-2
|
[19] |
Q.Y. Guo, F.L. Xu, L. Shen, et al., 20 μ m-thick Li6.4La3Zr1.4Ta0.6O12-based flexible solid electrolytes for all-solid-state lithium batteries, Energy Mater. Adv., 2022(2022), art. No. 9753506.
|
[20] |
Z.Y. Wang, L. Shen, S.G. Deng, P. Cui, and X.Y. Yao, 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries, Adv. Mater., 33(2021), No. 25, art. No. 2100353. doi: 10.1002/adma.202100353
|
[21] |
Q. Zhang, S.J. Wang, Y. Liu, et al., UiO-66-NH2 @67 core–shell metal-organic framework as fillers in solid composite electrolytes for high-performance all-solid-state lithium metal batteries, Energy Technol., 11(2023), No. 4, art. No. 2201438. doi: 10.1002/ente.202201438
|
[22] |
C.W. Sun, J. Liu, Y.D. Gong, D.P. Wilkinson, and J.J. Zhang, Recent advances in all-solid-state rechargeable lithium batteries, Nano Energy, 33(2017), p. 363. doi: 10.1016/j.nanoen.2017.01.028
|
[23] |
Q.Q. Zhang, K. Liu, F. Ding, and X.J. Liu, Recent advances in solid polymer electrolytes for lithium batteries, Nano Res., 10(2017), No. 12, p. 4139. doi: 10.1007/s12274-017-1763-4
|
[24] |
R. Dutta and A. Kumar, Ion transport dynamics in ionic liquid incorporated CuBTC-metal-organic framework based composite polymer electrolyte, J. Mater. Sci., 30(2019), No. 2, p. 1117.
|
[25] |
T. Wei, J.H. Lu, P. Zhang, et al., Metal-organic framework-derived Co3O4 modified nickel foam-based dendrite-free anode for robust lithium metal batteries, Chin. Chem. Lett., (2022), art. No. 107947.
|
[26] |
T. Wei, J.H. Lu, M.T. Wang, et al., MOF-derived materials enabled lithiophilic 3D hosts for lithium metal anode—A review, Chin. J. Chem., 2023. DOI: 10.1002/cjoc.202200816
|
[27] |
Q.Y. Han, S.Q. Wang, Z.Y. Jiang, X.C. Hu, and H.H. Wang, Composite polymer electrolyte incorporating metal-organic framework nanosheets with improved electrochemical stability for all-solid-state Li metal batteries, ACS Appl. Mater. Interfaces, 12(2020), No. 18, p. 20514. doi: 10.1021/acsami.0c03430
|
[28] |
T. Wei, Z.H. Zhang, Q. Zhang, et al., Anion-immobilized solid composite electrolytes based on metal-organic frameworks and superacid ZrO2 fillers for high-performance all solid-state lithium metal batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1636. doi: 10.1007/s12613-021-2289-z
|
[29] |
T. Wei, Z.M. Wang, M. Zhang, et al., Activated metal-organic frameworks (a-MIL-100 (Fe)) as fillers in polymer electrolyte for high-performance all-solid-state lithium metal batteries, Mater. Today Commun., 31(2022), art. No. 103518. doi: 10.1016/j.mtcomm.2022.103518
|
[30] |
Z.E. Liu, Z.W. Hu, X.A. Jiang, et al., Metal-organic framework confined solvent ionic liquid enables long cycling life quasi-solid-state lithium battery in wide temperature range, Small, 18(2022), No. 37, art. No. 2203011. doi: 10.1002/smll.202203011
|
[31] |
X. Tang, S.Y. Lv, K. Jiang, G.H. Zhou, and X.M. Liu, Recent development of ionic liquid-based electrolytes in lithium-ion batteries, J. Power Sources, 542(2022), art. No. 231792. doi: 10.1016/j.jpowsour.2022.231792
|
[32] |
P. Xu, H.Y. Chen, X. Zhou, and H.F. Xiang, Gel polymer electrolyte based on PVDF-HFP matrix composited with rGO-PEG-NH2 for high-performance lithium ion battery, J. Membr. Sci., 617(2021), art. No. 118660. doi: 10.1016/j.memsci.2020.118660
|
[33] |
T. Wei, Z.M. Wang, Q. Zhang, et al., Metal-organic framework-based solid-state electrolytes for all solid-state lithium metal batteries: A review, CrystEngComm, 24(2022), No. 28, p. 5014. doi: 10.1039/D2CE00663D
|
[34] |
Z.Q. Wang, R. Tan, H.B. Wang, et al., A metal-organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery, Adv. Mater., 30(2018), No. 2, art. No. 1704436. doi: 10.1002/adma.201704436
|
[35] |
Y. Liu, Q.H. Zeng, P.P. Chen, et al., Modified MOF-based composite all-solid-state polymer electrolyte with improved comprehensive performance for dendrite-free Li-ion batteries, Macromol. Chem. Phys., 223(2022), No. 8, art. No. 2100325. doi: 10.1002/macp.202100325
|
[36] |
J. Reiter and M. Nadherna, N-Allyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide—A film forming ionic liquid for graphite anode of Li-ion batteries, Electrochim. Acta, 71(2012), p. 22. doi: 10.1016/j.electacta.2012.03.088
|
[37] |
X.M. Gao, Q.T. Qu, G.B. Zhu, et al., Piperidinium-based ionic liquid electrolyte with linear solvent and LiODFB for LiFePO4/Li cells at room and high temperature, RSC Adv., 7(2017), No. 79, p. 50135. doi: 10.1039/C7RA10045K
|
[38] |
C.B. Zhu, H. Cheng, and Y. Yang, Electrochemical characterization of two types of PEO-based polymer electrolytes with room-temperature ionic liquids, J. Electrochem. Soc., 155(2008), No. 8, art. No. A569. doi: 10.1149/1.2931523
|
[39] |
R. Dutta and A. Kumar, Dielectric relaxation dynamics and AC conductivity scaling of metal-organic framework (MOF-5) based polymer electrolyte nanocomposites incorporated with ionic liquid, J. Phys. D: Appl. Phys., 50(2017), No. 42, art. No. 425302. doi: 10.1088/1361-6463/aa84ef
|
[40] |
K. Fujie, K. Otsubo, R. Ikeda, T. Yamada, and H. Kitagawa, Low temperature ionic conductor: Ionic liquid incorporated within a metal-organic framework, Chem. Sci., 6(2015), No. 7, p. 4306. doi: 10.1039/C5SC01398D
|
[41] |
Z.L. Hu, X.J. Zhang, and S.M. Chen, A graphene oxide and ionic liquid assisted anion-immobilized polymer electrolyte with high ionic conductivity for dendrite-free lithium metal batteries, J. Power Sources, 477(2020), art. No. 228754. doi: 10.1016/j.jpowsour.2020.228754
|
[42] |
T.H. Zhou, Y. Zhao, J.W. Choi, and A. Coskun, Ionic liquid functionalized gel polymer electrolytes for stable lithium metal batteries, Angew. Chem. Int. Ed., 60(2021), No. 42, p. 22791. doi: 10.1002/anie.202106237
|
[43] |
T. Wei, Z.H. Zhang, Z.M. Wang, et al., Ultrathin solid composite electrolyte based on Li6.4La3Zr1.4Ta0.6O12/PVDF-HFP/LiTFSI/succinonitrile for high-performance solid-state lithium metal batteries, ACS Appl. Energy Mater., 3(2020), No. 9, p. 9428. doi: 10.1021/acsaem.0c01872
|
[44] |
Q. Zhang, T. Wei, J.H. Lu, et al., The effects of PVB additives in MOFs-based solid composite electrolytes for all-solid-state lithium metal batteries, J. Electroanal. Chem., 926(2022), art. No. 116935. doi: 10.1016/j.jelechem.2022.116935
|
[45] |
N. Chen, Y. Xing, L.L. Wang, et al., “Tai Chi” philosophy driven rigid-flexible hybrid ionogel electrolyte for high-performance lithium battery, Nano Energy, 47(2018), p. 35. doi: 10.1016/j.nanoen.2018.02.036
|
[46] |
Q.H. Zeng, J.A. Wang, X. Li, et al., Cross-linked chains of metal-organic framework afford continuous ion transport in solid batteries, ACS Energy Lett., 6(2021), No. 7, p. 2434. doi: 10.1021/acsenergylett.1c00583
|
[47] |
J.F. Wu and X. Guo, Nanostructured metal-organic framework (MOF)-derived solid electrolytes realizing fast lithium ion transportation kinetics in solid-state batteries, Small, 15(2019), No. 27, art. No. 1902429. doi: 10.1002/smll.201902429
|
[48] |
K. Wang, L.Y. Yang, Z.Q. Wang, et al., Enhanced lithium dendrite suppressing capability enabled by a solid-like electrolyte with different-sized nanoparticles, Chem. Commun., 54(2018), No. 93, p. 13060. doi: 10.1039/C8CC07476C
|
[49] |
M. Liu, S. Zhang, E.R.H. van Eck, C. Wang, S. Ganapathy, and M. Wagemaker, Improving Li-ion interfacial transport in hybrid solid electrolytes, Nat. Nanotechnol., 17(2022), No. 9, p. 959. doi: 10.1038/s41565-022-01162-9
|
[50] |
Z.J. Bi, N. Zhao, L.N. Ma, et al., Interface engineering on cathode side for solid garnet batteries, Chem. Eng. J., 387(2020), art. No. 124089. doi: 10.1016/j.cej.2020.124089
|
[51] |
K.X. Liu, Z.Y. Wang, L.Y. Shi, S. Jungsuttiwong, and S. Yuan, Ionic liquids for high performance lithium metal batteries, J. Energy Chem., 59(2021), p. 320. doi: 10.1016/j.jechem.2020.11.017
|
[52] |
D.J. Yoo, K.J. Kim, and J.W. Choi, The synergistic effect of cation and anion of an ionic liquid additive for lithium metal anodes, Adv. Energy Mater., 8(2018), No. 11, art. No. 1702744. doi: 10.1002/aenm.201702744
|