Cite this article as: |
Na Xiao, Xu Guan, Dong Wang, Haile Yan, Minghui Cai, Nan Jia, Yudong Zhang, Claude Esling, Xiang Zhao, and Liang Zuo, Impact of W alloying on microstructure, mechanical property and corrosion resistance of face-centered cubic high entropy alloys: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1667-1679. https://doi.org/10.1007/s12613-023-2641-6 |
Haile Yan E-mail: yanhaile@mail.neu.edu.cn
Nan Jia E-mail: jian@mail.neu.edu.cn
[1] |
P.J. Shi, R.G. Li, Y. Li, et al., Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys, Science, 373(2021), No. 6557, p. 912. doi: 10.1126/science.abf6986
|
[2] |
Y.P. Lu, Y. Dong, H. Jiang, et al., Promising properties and future trend of eutectic high entropy alloys, Scripta Mater., 187(2020), p. 202. doi: 10.1016/j.scriptamat.2020.06.022
|
[3] |
Z.F. Lei, X.J. Liu, Y. Wu, et al., Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature, 563(2018), No. 7732, p. 546. doi: 10.1038/s41586-018-0685-y
|
[4] |
H.L. Yan, L.D. Wang, H.X. Liu, et al., Giant elastocaloric effect and exceptional mechanical properties in an all-d-metal Ni–Mn–Ti alloy: Experimental and ab-initio studies, Mater. Des., 184(2019), art. No. 108180. doi: 10.1016/j.matdes.2019.108180
|
[5] |
J.H. Zhou, Y.F. Shen, and N. Jia, Strengthening mechanisms of reduced activation ferritic/martensitic steels: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 335. doi: 10.1007/s12613-020-2121-1
|
[6] |
H.L. Yan, X.M. Huang, and C. Esling, Recent progress in crystallographic characterization, magnetoresponsive and elastocaloric effects of Ni–Mn–In-based heusler alloys—A review, Front. Mater., 9(2022), art. No. 812984. doi: 10.3389/fmats.2022.812984
|
[7] |
H.X. Liu, H.L. Yan, N. Jia, et al., Machine-learning-assisted discovery of empirical rule for inherent brittleness of full Heusler alloys, J. Mater. Sci. Technol., 131(2022), p. 1. doi: 10.1016/j.jmst.2022.05.017
|
[8] |
J.W. Yeh, S.K. Chen, S.J. Lin, et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
|
[9] |
B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375-377(2004), p. 213. doi: 10.1016/j.msea.2003.10.257
|
[10] |
Y. Wei, Y. Fu, Z.M. Pan, et al., Influencing factors and mechanism of high-temperature oxidation of high-entropy alloys: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 915. doi: 10.1007/s12613-021-2257-7
|
[11] |
Z. Shojaei, G.R. Khayati, and E. Darezereshki, Review of electrodeposition methods for the preparation of high-entropy alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1683. doi: 10.1007/s12613-022-2439-y
|
[12] |
Z. Cheng, S.Z. Wang, G.L. Wu, J.H. Gao, X.S. Yang, and H.H. Wu, Tribological properties of high-entropy alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 389. doi: 10.1007/s12613-021-2373-4
|
[13] |
Y. Zhang, T.T. Zuo, Z. Tang, et al., Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61(2014), p. 1. doi: 10.1016/j.pmatsci.2013.10.001
|
[14] |
P.J. Shi, W.L. Ren, T.X. Zheng, et al., Enhanced strength–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae, Nat. Commun., 10(2019), art. No. 489. doi: 10.1038/s41467-019-08460-2
|
[15] |
T. Nagase, S. Anada, P.D. Rack, et al., Electron-irradiation-induced structural change in Zr–Hf–Nb alloy, Intermetallics, 26(2012), p. 122. doi: 10.1016/j.intermet.2012.02.015
|
[16] |
O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19(2011), No. 5, p. 698. doi: 10.1016/j.intermet.2011.01.004
|
[17] |
B. Cantor, Multicomponent high-entropy Cantor alloys, Prog. Mater. Sci., 120(2021), art. No. 100754. doi: 10.1016/j.pmatsci.2020.100754
|
[18] |
Z.W. Wang, W.J. Lu, F.C. An, et al., High stress twinning in a compositionally complex steel of very high stacking fault energy, Nat. Commun., 13(2022), No. 1, art. No. 3598. doi: 10.1038/s41467-022-31315-2
|
[19] |
M.Y. He, N. Jia, X.C. Liu, Y.F. Shen, and L. Zuo, Abnormal chemical composition fluctuations in multi-principal-element alloys induced by simple cyclic deformation, J. Mater. Sci. Technol., 113(2022), p. 287. doi: 10.1016/j.jmst.2021.08.075
|
[20] |
J.Y. He, H. Wang, H.L. Huang, et al., A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Mater., 102(2016), p. 187. doi: 10.1016/j.actamat.2015.08.076
|
[21] |
N.H. Tariq, M. Naeem, B.A. Hasan, J.I. Akhter, and M. Siddique, Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy, J. Alloys Compd., 556(2013), p. 79. doi: 10.1016/j.jallcom.2012.12.095
|
[22] |
Y. Dong and Y.P. Lu, Effects of tungsten addition on the microstructure and mechanical properties of near-eutectic AlCoCrFeNi2 high-entropy alloy, J. Mater. Eng. Perform., 27(2018), No. 1, p. 109. doi: 10.1007/s11665-017-3096-6
|
[23] |
N. Malatji, T. Lengopeng, S. Pityana, and A.P.I. Popoola, Microstructural, mechanical and electrochemical properties of AlCrFeCuNiWx high entropy alloys, J. Mater. Res. Technol., 11(2021), p. 1594. doi: 10.1016/j.jmrt.2021.01.103
|
[24] |
D. Kumar, V.K. Sharma, Y.V.S.S. Prasad, and V. Kumar, Materials-structure-property correlation study of spark plasma sintered AlCuCrFeMnWx (x = 0, 0.05, 0.1, 0.5) high-entropy alloys, J. Mater. Res., 34(2019), No. 5, p. 767. doi: 10.1557/jmr.2019.18
|
[25] |
S.L. Wei and C.C. Tasan, Deformation faulting in a metastable CoCrNiW complex concentrated alloy: A case of negative intrinsic stacking fault energy? Acta Mater., 200(2020), p. 992. doi: 10.1016/j.actamat.2020.09.056
|
[26] |
R.B. Chang, W. Fang, X. Bai, et al., Effects of tungsten additions on the microstructure and mechanical properties of CoCrNi medium entropy alloys, J. Alloys Compd., 790(2019), p. 732. doi: 10.1016/j.jallcom.2019.03.235
|
[27] |
Z.G. Wu, W. Guo, K. Jin, J.D. Poplawsky, Y.F. Gao, and H.B. Bei, Enhanced strength and ductility of a tungsten-doped CoCrNi medium-entropy alloy, J. Mater. Res., 33(2018), No. 19, p. 3301. doi: 10.1557/jmr.2018.247
|
[28] |
Y.J. Chen, Y. Fang, X.Q. Fu, et al., Origin of strong solid solution strengthening in the CrCoNi-W medium entropy alloy, J. Mater. Sci. Technol., 73(2021), p. 101. doi: 10.1016/j.jmst.2020.08.058
|
[29] |
L. Zhang, X.F. Huo, A.G. Wang, et al., A ductile high entropy alloy strengthened by nano sigma phase, Intermetallics, 122(2020), art. No. 106813. doi: 10.1016/j.intermet.2020.106813
|
[30] |
L. Zhang, L. Zhang, H. Wang, et al., Evolution of the microstructure and mechanical properties of an sigma-hardened high-entropy alloy at different annealing temperatures, Mater. Sci. Eng. A, 831(2022), art. No. 142140. doi: 10.1016/j.msea.2021.142140
|
[31] |
H. Ma, Y. Shao, and C.H. Shek, CoCuFeNi high entropy alloy reinforced by in situ W particles, Mater. Sci. Eng. A, 797(2020), art. No. 140218. doi: 10.1016/j.msea.2020.140218
|
[32] |
H. Jiang, L. Jiang, K.M. Han, et al., Effects of tungsten on microstructure and mechanical properties of CrFeNiV0.5Wx and CrFeNi2V0.5Wx high-entropy alloys, J. Mater. Eng. Perform., 24(2015), No. 12, p. 4594. doi: 10.1007/s11665-015-1767-8
|
[33] |
Z.Z. Niu, J. Xu, T. Wang, N.R. Wang, Z.H. Han, and Y. Wang, Microstructure, mechanical properties and corrosion resistance of CoCrFeNiWx (x = 0, 0.2, 0.5) high entropy alloys, Intermetallics, 112(2019), art. No. 106550. doi: 10.1016/j.intermet.2019.106550
|
[34] |
M.G. Poletti, G. Fiore, F. Gili, D. Mangherini, and L. Battezzati, Development of a new high entropy alloy for wear resistance: FeCoCrNiW0.3 and FeCoCrNiW0.3 + 5 at.% of C, Mater. Des., 115(2017), p. 247. doi: 10.1016/j.matdes.2016.11.027
|
[35] |
M.H. Tsai, A.C. Fan, and H.G. Wang, Effect of atomic size difference on the type of major intermetallic phase in arc-melted CoCrFeNiX high-entropy alloys, J. Alloys Compd., 695(2017), p. 1479. doi: 10.1016/j.jallcom.2016.10.286
|
[36] |
L. Wang, L. Wang, Y.C. Tang, et al., Microstructure and mechanical properties of CoCrFeNiWx high entropy alloys reinforced by μ phase particles, J. Alloys Compd., 843(2020), art. No. 155997. doi: 10.1016/j.jallcom.2020.155997
|
[37] |
A.C. Fan, J.H. Li, and M.H. Tsai, On the phase constituents of three CoCrFeNiX (X = Cr, Mo, W) high-entropy alloys after prolonged annealing, Mater. Chem. Phys., 276(2022), art. No. 125431. doi: 10.1016/j.matchemphys.2021.125431
|
[38] |
V.K. Soni, S. Sanyal, and S.K. Sinha, Influence of tungsten on microstructure evolution and mechanical properties of selected novel FeCoCrMnWx high entropy alloys, Intermetallics, 132(2021), art. No. 107161. doi: 10.1016/j.intermet.2021.107161
|
[39] |
J.J. Yang, C.J. Liang, C.L. Wang, et al., Improving mechanical properties of (Co1.5FeNi)88.5Ti6Al4R1.5 (R = Hf, W, Nb, Ta, Mo, V) multi-component high-entropy alloys via multi-stage strain hardening strengthening, Mater. Des., 222(2022), art. No. 111061. doi: 10.1016/j.matdes.2022.111061
|
[40] |
W.H. Liu, Z.P. Lu, J.Y. He, et al., Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases, Acta Mater., 116(2016), p. 332. doi: 10.1016/j.actamat.2016.06.063
|
[41] |
J.W. Miao, T.M. Guo, J.F. Ren, A.J. Zhang, B. Su, and J.H. Meng, Optimization of mechanical and tribological properties of FCC CrCoNi multi-principal element alloy with Mo addition, Vacuum, 149(2018), p. 324. doi: 10.1016/j.vacuum.2018.01.012
|
[42] |
R. Fan, L.P. Wang, L.L. Zhao, et al., Synergistic effect of Nb and Mo alloying on the microstructure and mechanical properties of CoCrFeNi high entropy alloy, Mater. Sci. Eng. A, 829(2022), art. No. 142153. doi: 10.1016/j.msea.2021.142153
|
[43] |
W.J. Lu, X.A. Luo, Y.Q. Yang, and B. Huang, Effects of Nb additions on structure and mechanical properties evolution of CoCrNi medium-entropy alloy, Mater. Express, 9(2019), No. 4, p. 291. doi: 10.1166/mex.2019.1506
|
[44] |
U. Sunkari, S.R. Reddy, B.D.S. Rathod, et al., Heterogeneous precipitation mediated heterogeneous nanostructure enhances strength-ductility synergy in severely cryo-rolled and annealed CoCrFeNi2.1Nb0.2 high entropy alloy, Sci. Rep., 10(2020), No. 1, art. No. 6056. doi: 10.1038/s41598-020-63038-z
|
[45] |
H. Jiang, L. Li, Z.L. Ni, D.X. Qiao, Q. Zhang, and H.M. Sui, Effect of Nb on microstructure and properties of AlCoCrFeNi2.1 high entropy alloy, Mater. Chem. Phys., 290(2022), art. No. 126631. doi: 10.1016/j.matchemphys.2022.126631
|
[46] |
S. Huang, W. Li, O. Eriksson, and L. Vitos, Chemical ordering controlled thermo-elasticity of AlTiVCr1−xNbx high-entropy alloys, Acta Mater., 199(2020), p. 53. doi: 10.1016/j.actamat.2020.08.005
|
[47] |
Y. Du, X.H. Pei, Z.W. Tang, et al., Mechanical and tribological performance of CoCrNiHfx eutectic medium-entropy alloys, J. Mater. Sci. Technol., 90(2021), p. 194. doi: 10.1016/j.jmst.2021.03.023
|
[48] |
F. Maresca and W.A. Curtin, Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900K, Acta Mater., 182(2020), p. 235. doi: 10.1016/j.actamat.2019.10.015
|
[49] |
W.N. Jiao, J.W. Miao, Y.P. Lu, et al., Designing CoCrFeNi–M (M = Nb, Ta, Zr, and Hf) eutectic high-entropy alloys via a modified simple mixture method, J. Alloys Compd., 941(2023), art. No. 168975. doi: 10.1016/j.jallcom.2023.168975
|
[50] |
C. Ai, F. He, M. Guo, et al., Alloy design, micromechanical and macromechanical properties of CoCrFeNiTax eutectic high entropy alloys, J. Alloys Compd., 735(2018), p. 2653. doi: 10.1016/j.jallcom.2017.12.015
|
[51] |
C. Ai, G.X. Wang, L. Liu, et al., Effect of Ta addition on solidification characteristics of CoCrFeNiTax eutectic high entropy alloys, Intermetallics, 120(2020), art. No. 106769. doi: 10.1016/j.intermet.2020.106769
|
[52] |
B. Chanda, S.K. Pani, and J. Das, Mechanism of microstructure evolution and spheroidization in ultrafine lamellar CoCrFeNi(Nb0·5/Ta0.4) eutectic high entropy alloys upon hot deformation, Mater. Sci. Eng. A, 835(2022), art. No. 142669. doi: 10.1016/j.msea.2022.142669
|
[53] |
Y. Yang, X.Y. Luo, T.X. Ma, L.Y. Wen, L.W. Hu, and M.L. Hu, Effect of Al on characterization and properties of AlxCoCrFeNi high entropy alloy prepared via electro-deoxidization of the metal oxides and vacuum hot pressing sintering process, J. Alloys Compd., 864(2021), art. No. 158717. doi: 10.1016/j.jallcom.2021.158717
|
[54] |
W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, and J.W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys, Intermetallics, 26(2012), p. 44. doi: 10.1016/j.intermet.2012.03.005
|
[55] |
Z. Jiang, R. Wei, W.Z. Wang, et al., Achieving high strength and ductility in Fe50Mn25Ni10Cr15 medium entropy alloy via Al alloying, J. Mater. Sci. Technol., 100(2022), p. 20. doi: 10.1016/j.jmst.2021.04.068
|
[56] |
D. Kumar, O. Maulik, S. Kumar, V.K. Sharma, Y.V.S.S. Prasad, and V. Kumar, Impact of tungsten on phase evolution in nanocrystalline AlCuCrFeMnWx (x = 0, 0.05, 0.1 and 0.5 mol) high entropy alloys, Mater. Res. Express, 4(2017), No. 11, art. No. 114004. doi: 10.1088/2053-1591/aa96df
|
[57] |
D. Kumar, O. Maulik, A.S. Bagri, Y.V.S.S. Prasad, and V. Kumar, Microstructure and characterization of mechanically alloyed equiatomic AlCuCrFeMnW high entropy alloy, Mater. Today, 3(2016), No. 9, p. 2926.
|
[58] |
D. Kumar, O. Maulik, S. Kumar, Y.V.S.S. Prasad, and V. Kumar, Phase and thermal study of equiatomic AlCuCrFeMnW high entropy alloy processed via spark plasma sintering, Mater. Chem. Phys., 210(2018), p. 71. doi: 10.1016/j.matchemphys.2017.08.049
|
[59] |
D. Kumar, O. Maulik, V.K. Sharma, Y.V.S.S. Prasad, and V. Kumar, Understanding the effect of tungsten on corrosion behavior of AlCuCrFeMnWx high-entropy alloys in 3.5 wt.% NaCl solution, J. Mater. Eng. Perform., 27(2018), No. 9, p. 4481. doi: 10.1007/s11665-018-3536-y
|
[60] |
M.Y. He, Y.F. Shen, N. Jia, and P.K. Liaw, C and N doping in high-entropy alloys: A pathway to achieve desired strength-ductility synergy, Appl. Mater. Today, 25(2021), art. No. 101162. doi: 10.1016/j.apmt.2021.101162
|
[61] |
L.Y. Liu, Y. Zhang, J.H. Han, et al., Nanoprecipitate-strengthened high-entropy alloys, Adv. Sci., 8(2021), No. 23, art. No. 2100870. doi: 10.1002/advs.202100870
|
[62] |
H. Inui, K. Kishida, L. Li, A.M. Manzoni, S. Haas, and U. Glatzel, Uniaxial mechanical properties of face-centered cubic single- and multiphase high-entropy alloys, MRS Bull., 47(2022), No. 2, p. 168. doi: 10.1557/s43577-022-00280-y
|
[63] |
P.A. Ibrahim, İ. Özkul, and C.A. Canbay, An overview of high-entropy alloys, Emergent Mater., 5(2022), No. 6, p. 1779. doi: 10.1007/s42247-022-00349-z
|
[64] |
J.J. Lian, X.G. Ma, Z.Y. Jiang, C.S. Lee, and J.W. Zhao, A review of the effect of tungsten alloying on the microstructure and properties of steels, Tungsten, (2022), p. 1.
|
[65] |
Y.C. Xie, H. Cheng, Q.H. Tang, W. Chen, W.K. Chen, and P.Q. Dai, Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering, Intermetallics, 93(2018), p. 228. doi: 10.1016/j.intermet.2017.09.013
|
[66] |
G. Qin, R.R. Chen, H.T. Zheng, et al., Strengthening FCC-CoCrFeMnNi high entropy alloys by Mo addition, J. Mater. Sci. Technol., 35(2019), No. 4, p. 578. doi: 10.1016/j.jmst.2018.10.009
|
[67] |
H.W. King, Quantitative size-factors for metallic solid solutions, J. Mater. Sci., 1(1966), No. 1, p. 79. doi: 10.1007/BF00549722
|
[68] |
H.L. Yan, H.X. Liu, Y. Zhao, et al., Impact of B alloying on ductility and phase transition in the Ni–Mn-based magnetic shape memory alloys: Insights from first-principles calculation, J. Mater. Sci. Technol., 74(2021), p. 27. doi: 10.1016/j.jmst.2020.10.010
|
[69] |
H.L. Yan, Y.D. Zhang, C. Esling, X. Zhao, and L. Zuo, Determination of strain path during martensitic transformation in materials with two possible transformation orientation relationships from variant self-organization, Acta Mater., 202(2021), p. 112. doi: 10.1016/j.actamat.2020.10.054
|
[70] |
T.B. Massalski and U. Mizutani, Electronic structure of Hume-Rothery phases, Prog. Mater. Sci., 22(1978), No. 3-4, p. 151. doi: 10.1016/0079-6425(78)90001-4
|
[71] |
A. Jacob, C. Schmetterer, L. Singheiser, A. Gray-Weale, B. Hallstedt, and A. Watson, Modeling of Fe–W phase diagram using first principles and phonons calculations, Calphad, 50(2015), p. 92. doi: 10.1016/j.calphad.2015.04.010
|
[72] |
A.F. Sheykhlari, H. Arabi, S.M.A. Boutorabi, and C. Cayron, Effect of chromium content on microstructural evolution of CoNiAlW superalloy, Appl. Phys. A, 128(2022), No. 8, art. No. 719. doi: 10.1007/s00339-022-05768-7
|
[73] |
H. Okamoto, M.E. Schlesinger, and E.M. Mueller, Binary Alloy Phase Diagrams, ASM International, Cleveland, 2016.
|
[74] |
R.B. Chang, W. Fang, H.Y. Yu, et al., Heterogeneous banded precipitation of (CoCrNi)93Mo7 medium entropy alloys towards strength–ductility synergy utilizing compositional inhomogeneity, Scripta Mater., 172(2019), p. 144. doi: 10.1016/j.scriptamat.2019.07.026
|
[75] |
Z.F. He, N. Jia, H.W. Wang, H.L. Yan, and Y.F. Shen, Synergy effect of multi-strengthening mechanisms in FeMnCoCrN HEA at cryogenic temperature, J. Mater. Sci. Technol., 86(2021), p. 158. doi: 10.1016/j.jmst.2020.12.079
|
[76] |
Z.F. He, N. Jia, H.L. Yan, et al., Multi-heterostructure and mechanical properties of N-doped FeMnCoCr high entropy alloy, Int. J. Plast., 139(2021), art. No. 102965. doi: 10.1016/j.ijplas.2021.102965
|
[77] |
W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, and Z.P. Lu, Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy, Scripta Mater., 68(2013), No. 7, p. 526. doi: 10.1016/j.scriptamat.2012.12.002
|
[78] |
A. Balyanov, Corrosion resistance of ultra fine-grained Ti, Scripta Mater., 51(2004), No. 3, p. 225. doi: 10.1016/j.scriptamat.2004.04.011
|
[79] |
Y. Qiu, M.A. Gibson, H.L. Fraser, and N. Birbilis, Corrosion characteristics of high entropy alloys, Mater. Sci. Technol., 31(2015), No. 10, p. 1235. doi: 10.1179/1743284715Y.0000000026
|