Haiyong Cheng, Zemin Liu, Shunchuan Wu, Hong Li, Jiaqi Zhu, Wei Sun, and Guanzhao Jiang, Resistance characteristics of paste pipeline flow in a pulse-pumping environment, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1596-1607. https://doi.org/10.1007/s12613-023-2644-3
Cite this article as:
Haiyong Cheng, Zemin Liu, Shunchuan Wu, Hong Li, Jiaqi Zhu, Wei Sun, and Guanzhao Jiang, Resistance characteristics of paste pipeline flow in a pulse-pumping environment, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1596-1607. https://doi.org/10.1007/s12613-023-2644-3
Research Article

Resistance characteristics of paste pipeline flow in a pulse-pumping environment

+ Author Affiliations
  • Corresponding authors:

    Hong Li    E-mail: lihongzxl@126.com

    Jiaqi Zhu    E-mail: kust_zhujiaqi@163.com

  • Received: 25 February 2023Revised: 27 March 2023Accepted: 4 April 2023Available online: 7 April 2023
  • Paste flow patterns and microscopic particle structures were studied in a pressurized environment generated by a pulse pump. Complex loop-pipe experiments and fluid–solid coupling-based simulations were conducted. The scanning electron microscopy technique was also applied. Results revealed that flow resistance is closely related to pipeline curvature and angle in a complex pipe network. The vertical downward–straight pipe–inclined downward combination was adopted to effectively reduce the loss in resistance along with reducing the number of bends or increasing the radius of bend curvature. The maximum velocity ratio and velocity offset values could quantitatively characterize the influences of different pipeline layouts on the resistance. The correlation reached 96%. Particle distribution and interparticle forces affected flow resistance. Uniform particle states and weak interparticle forces were conducive to steady transport. Pulse pump pressure led to high flow resistance. It could improve pipe flow stability by increasing flow uniformity and particle motion stability. These results can contribute to safe and efficient paste filling.
  • loading
  • Supplementary Information-10.1007s12613-023-2644-3.docx
  • [1]
    C.H. Wang and D.Q. Gan, Study and analysis on the influence degree of particle settlement factors in pipe transportation of backfill slurry, Metals, 11(2021), No. 11, art. No. 1780. doi: 10.3390/met11111780
    [2]
    Z.X. Lu and M.F. Cai, Disposal methods on solid wastes from mines in transition from open-pit to underground mining, Procedia Environ. Sci., 16(2012), p. 715. doi: 10.1016/j.proenv.2012.10.098
    [3]
    H.Z. Dong, N.A. Aziz, H.Z.M. Shafri, and K.A. Bin Ahmad, Numerical study on transportation of cemented paste backfill slurry in bend pipe, Processes, 10(2022), No. 8, art. No. 1454. doi: 10.3390/pr10081454
    [4]
    H.Z. Jiao, W.B. Yang, Z.E. Ruan, J.X. Yu, J.H. Liu, and Y.X. Yang, Microscale mechanism of tailing thickening in metal mines, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1538. doi: 10.1007/s12613-022-2587-0
    [5]
    L.H. Yang, J.C. Li, H.B. Liu, et al., Systematic review of mixing technology for recycling waste tailings as cemented paste backfill in mines of China, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1430. doi: 10.1007/s12613-023-2609-6
    [6]
    A.X. Wu, Z.E. Ruan, and J.D. Wang, Rheological behavior of paste in metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 717. doi: 10.1007/s12613-022-2423-6
    [7]
    X. Zhao, A. Fourie, R. Veenstra, and C.C. Qi, Safety of barricades in cemented paste-backfilled stopes, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1054. doi: 10.1007/s12613-020-2006-3
    [8]
    S.H. Yin, Z.P. Yan, X. Chen, et al., Active roof-contact: The future development of cemented paste backfill, Constr. Build. Mater., 370(2023), art. No. 130657. doi: 10.1016/j.conbuildmat.2023.130657
    [9]
    Q.L. Zhang, H. Wu, Y. Feng, D.L. Wang, H.B. Su, and X.S. Li, Rheological and physicomechanical properties of rod milling sand-based cemented paste backfill modified by sulfonated naphthalene formaldehyde condensate, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 225. doi: 10.1007/s12613-021-2397-9
    [10]
    Z.L. Xue, D.Q. Gan, Y.Z. Zhang, and Z.Y. Liu, Rheological behavior of ultrafine-tailings cemented paste backfill in high-temperature mining conditions, Constr. Build. Mater., 253(2020), art. No. 119212. doi: 10.1016/j.conbuildmat.2020.119212
    [11]
    X.B. Qin, C.C. Ji, Y.T. Shen, P. Wang, M.Q. Li, and J.L. Zhang, ECT image recognition of pipe plugging flow patterns based on broad learning system in mining filling, Adv. Civ. Eng., 2021(2021), p. 1.
    [12]
    Z.G. Zhang, X.Z. Shi, and X.F. Lin, Parameter optimization and transportation characteristics of backfilling pipe network based on CFD, Chin. J. Nonferrous. Met., 29(2019), No. 10, p. 2411.
    [13]
    L. Pullum, Pipelining tailings, pastes and backfill, [in] Paste 2007: Proceedings of the Tenth International Seminar on Paste and Thickened Tailings, Perth, p. 113.
    [14]
    A.J.C. Paterson, Pipeline transport of high density slurries: A historical review of past mistakes, lessons learned and current technologies, Min. Technol., 121(2012), No. 1, p. 37. doi: 10.1179/1743286311Y.0000000020
    [15]
    H.W. Shi, J.R. Huang, D.P. Qiao, G.L. Teng, and B. Wang, Simulation of long distance paste filling pipeline transportation in ultra deep well based on ANSYS FLUENT, Nonferrous Metal. Min. Sect., 72(2020), No. 2, p. 5.
    [16]
    Z.E. Ruan, C.P. Li, and C. Shi, Numerical simulation of flocculation and settling behavior of whole-tailings particles in deep-cone thickener, J. Cent. South Univ., 23(2016), No. 3, p. 740. doi: 10.1007/s11771-016-3119-8
    [17]
    L.E. He, Study on Pipeline Transport Parameter Optimization of Laterite Mine [Dissertation], Wuhan University of Technology, Wuhan, 2009, p. 48.
    [18]
    A. Leonardi, F.K. Wittel, M. Mendoza, and H.J. Herrmann, Coupled DEM-LBM method for the free-surface simulation of heterogeneous suspensions, Comput. Part. Mech., 1(2014), No. 1, p. 3. doi: 10.1007/s40571-014-0001-z
    [19]
    S.G. Chen, Development of LBM-DEM for Bingham Suspension with Application to Self-compacting Concrete [Dissertation], Tsinghua University, Beijing, 2014, p. 35.
    [20]
    F.Y. Lyu, C.H. Ling, H. Li, X.G. Liu, J. Gao, and M. Wu, Experimental research of how the boundary layer lower the pipe drag reduction in transport of dense paste, Lubr. Sci., 29(2017), No. 6, p. 411. doi: 10.1002/ls.1377
    [21]
    F. Bouzit, M. Bouzit, and M. Mokeddem, Study of the rheological behaviour and the curvature radius effects on a non Newtonian fluid flow in a curved square duct, Int. J. Eng. Res. Afr., 59(2022), p. 225. doi: 10.4028/p-ll8x57
    [22]
    B.R. Oliveira, B.C. Leal, L. Pereira Filho, et al., A model to calculate the pressure loss of Newtonian and non-Newtonian fluids flow in coiled tubing operations, J. Petroleum Sci. Eng., 204(2021), art. No. 108640. doi: 10.1016/j.petrol.2021.108640
    [23]
    A.X. Wu, H. Li, H.Y. Cheng, Y.M. Wang, C.P. Li, and Z.E. Ruan, Status and prospects of research on the rheology of paste backfill using unclassified tailings (Part 2): Rheological measurement and prospects, Chin. J. Eng., 43(2021), No. 4, p. 451.
    [24]
    H.N. Lee, Y.K. Lee, J.Y. Park, and J.W. Han, Analysis of flow rate and pressure in syringe-based wound irrigation using Bernoulli’s equation, Sci. Rep., 12(2022), No. 1, art. No. 14957. doi: 10.1038/s41598-022-19402-2
    [25]
    A. Wautier, S. Bonelli, and F. Nicot, Flow impact on granular force chains and induced instability, Phys. Rev. E, 98(2018), No. 4, art. No. 042909. doi: 10.1103/PhysRevE.98.042909
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(889) PDF Downloads(35) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return