Ning Fan, Zhihui Li, Yanan Li, Xiwu Li, Yongan Zhang,  and Baiqing Xiong, Residual stress with asymmetric spray quenching for thick aluminum alloy plates, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2200-2211. https://doi.org/10.1007/s12613-023-2645-2
Cite this article as:
Ning Fan, Zhihui Li, Yanan Li, Xiwu Li, Yongan Zhang,  and Baiqing Xiong, Residual stress with asymmetric spray quenching for thick aluminum alloy plates, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2200-2211. https://doi.org/10.1007/s12613-023-2645-2
Research Article

Residual stress with asymmetric spray quenching for thick aluminum alloy plates

+ Author Affiliations
  • Corresponding authors:

    Zhihui Li    E-mail: lzh@grinm.com

    Yanan Li    E-mail: liyanan@grinm.com

  • Received: 4 November 2022Revised: 6 March 2023Accepted: 7 April 2023Available online: 8 April 2023
  • Solution and quenching heat treatments are generally carried out in a roller hearth furnace for large-scale thick aluminum alloy plates. However, the asymmetric or uneven spray water flow rate is inevitable under industrial production conditions, which leads to an asymmetric residual stress distribution. The spray quenching treatment was conducted on self-designed spray equipment, and the residual stress along the thickness direction was measured by a layer removal method based on deflections. Under the asymmetric spray quenching condition, the subsurface stress of the high-flow rate surface was lower than that of the low-flow rate surface, and the difference between the two subsurface stresses increased with the increase in the difference in water flow rates. The subsurface stress underneath the surface with a water flow rate of 0.60 m3/h was 15.38 MPa less than that of 0.15 m3/h. The simulated residual stress by finite element (FE) method of the high heat transfer coefficient (HTC) surface was less than that of the low HTC surface, which is consistent with the experimental results. The FE model can be used to analyze the strain and stress evolution and predict the quenched stress magnitude and distribution.
  • loading
  • [1]
    T. Dursun and C. Soutis, Recent developments in advanced aircraft aluminium alloys, Mater. Des., 56(2014), p. 862. doi: 10.1016/j.matdes.2013.12.002
    [2]
    A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, and W.S. Miller, Recent development in aluminium alloys for aerospace applications, Mater. Sci. Eng. A, 280(2000), No. 1, p. 102. doi: 10.1016/S0921-5093(99)00674-7
    [3]
    A. Azarniya, A.K. Taheri, and K.K. Taheri, Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective, J. Alloys Compd., 781(2019), p. 945. doi: 10.1016/j.jallcom.2018.11.286
    [4]
    P.A. Rometsch, Y. Zhang, and S. Knight, Heat treatment of 7xxx series aluminium alloys—Some recent developments, Trans. Nonferrous Met. Soc. China, 24(2014), No. 7, p. 2003. doi: 10.1016/S1003-6326(14)63306-9
    [5]
    G. Sha and A. Cerezo, Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050), Acta Mater., 52(2004), No. 15, p. 4503. doi: 10.1016/j.actamat.2004.06.025
    [6]
    G.T. Liang and I. Mudawar, Review of spray cooling - Part 1: Single-phase and nucleate boiling regimes, and critical heat flux, Int. J. Heat Mass Transfer, 115(2017), p. 1174.
    [7]
    G.T. Liang and I. Mudawar, Review of spray cooling - Part 2: High temperature boiling regimes and quenching applications, Int. J. Heat Mass Transfer, 115(2017), p. 1206.
    [8]
    J.S. Robinson, D.A. Tanner, and C.E. Truman, 50th anniversary article: The origin and management of residual stress in heat-treatable aluminium alloys, Strain, 50(2014), No. 3, p. 185. doi: 10.1111/str.12091
    [9]
    J. Guo, H.Y. Fu, B. Pan, and R.K. Kang, Recent progress of residual stress measurement methods: A review, Chin. J. Aeronaut., 34(2021), No. 2, p. 54. doi: 10.1016/j.cja.2019.10.010
    [10]
    N.S. Rossini, M. Dassisti, K.Y. Benyounis, and A.G. Olabi, Methods of measuring residual stresses in components, Mater. Des., 35(2012), p. 572. doi: 10.1016/j.matdes.2011.08.022
    [11]
    R. Pan, T. Pirling, J.H. Zheng, J.G. Lin, and C.M. Davies, Quantification of thermal residual stresses relaxation in AA7xxx aluminium alloy through cold rolling, J. Mater. Process. Technol., 264(2019), p. 454. doi: 10.1016/j.jmatprotec.2018.09.034
    [12]
    M.K. Khan, M.E. Fitzpatrick, S.V. Hainsworth, A.D. Evans, and L. Edwards, Application of synchrotron X-ray diffraction and nanoindentation for the determination of residual stress fields around scratches, Acta Mater., 59(2011), No. 20, p. 7508. doi: 10.1016/j.actamat.2011.08.034
    [13]
    K. Tanaka, The cosα method for X-ray residual stress measurement using two-dimensional detector, Mech. Eng. Rev., 6(2019), No. 1, art. No. 18-00378. doi: 10.1299/mer.18-00378
    [14]
    S. Nervi and B.A. Szabó, On the estimation of residual stresses by the crack compliance method, Comput. Meth. Appl. Mech. Eng., 196(2007), No. 37-40, p. 3577. doi: 10.1016/j.cma.2006.10.037
    [15]
    C. Liu and X. Yi, Residual stress measurement on AA6061-T6 aluminum alloy friction stir butt welds using contour method, Mater. Des., 46(2013), p. 366. doi: 10.1016/j.matdes.2012.10.030
    [16]
    R.G. Treuting and W.T. Read, A mechanical determination of biaxial residual stress in sheet materials, J. Appl. Phys., 22(1951), No. 2, p. 130. doi: 10.1063/1.1699913
    [17]
    R. Kopun, L. Škerget, M. Hriberšek, D.S. Zhang, B. Stauder, and D. Greif, Numerical simulation of immersion quenching process for cast aluminium part at different pool temperatures, Appl. Therm. Eng., 65(2014), No. 1-2, p. 74. doi: 10.1016/j.applthermaleng.2013.12.058
    [18]
    Y.B. Dong, W.Z. Shao, L.X. Lu, J.T. Jiang, and L. Zhen, Numerical simulation of residual stress in an Al–Cu alloy block during quenching and aging, J. Mater. Eng. Perform., 24(2015), No. 12, p. 4928. doi: 10.1007/s11665-015-1758-9
    [19]
    G.S. Zhang, C.H. Mao, J. Wang, N. Fan, and T.T. Guo, Numerical analysis and experimental studies on the residual stress of W/2024Al composites, Materials, 12(2019), No. 17, art. No. 2746. doi: 10.3390/ma12172746
    [20]
    C. Şimşir and C.H. Gür, 3D FEM simulation of steel quenching and investigation of the effect of asymmetric geometry on residual stress distribution, J. Mater. Process. Technol., 207(2008), No. 1-3, p. 211. doi: 10.1016/j.jmatprotec.2007.12.074
    [21]
    W.C. Jiang, W. Woo, G.B. An, and J.U. Park, Neutron diffraction and finite element modeling to study the weld residual stress relaxation induced by cutting, Mater. Des., 51(2013), p. 415. doi: 10.1016/j.matdes.2013.04.053
    [22]
    S.R. Yazdi, D. Retraint, and J. Lu, Study of through-thickness residual stress by numerical and experimental techniques, J. Strain Anal. Eng. Des., 33(1998), No. 6, p. 449. doi: 10.1243/0309324981513147
    [23]
    N. Murugan and R. Narayanan, Finite element simulation of residual stresses and their measurement by contour method, Mater. Des., 30(2009), No. 6, p. 2067. doi: 10.1016/j.matdes.2008.08.041
    [24]
    D.A. Tanner and J.S. Robinson, Residual stress prediction and determination in 7010 aluminum alloy forgings, Exp. Mech., 40(2000), No. 1, p. 75. doi: 10.1007/BF02327551
    [25]
    D.A. Tanner and J.S. Robinson, Time transient validation of residual stress prediction models for aluminium alloy quenching, Mater. Sci. Technol., 32(2016), No. 14, p. 1533. doi: 10.1080/02670836.2016.1195122
    [26]
    N. Chobaut, D. Carron, S. Arsène, P. Schloth, and J.M. Drezet, Quench induced residual stress prediction in heat treatable 7xxx aluminium alloy thick plates using Gleeble interrupted quench tests, J. Mater. Process. Technol., 222(2015), p. 373. doi: 10.1016/j.jmatprotec.2015.03.029
    [27]
    J. Liu, Z.Y. Du, J.L. Su, et al., Effect of quenching residual stress on precipitation behaviour of 7085 aluminium alloy, J. Mater. Sci. Technol., 132(2023), p. 154. doi: 10.1016/j.jmst.2022.06.010
    [28]
    Y.X. Cai, L.H. Zhan, Y.Q. Xu, et al., Stress relaxation aging behavior and constitutive modelling of AA7150-T7751 under different temperatures, initial stress levels and pre-strains, Metals, 9(2019), No. 11, art. No. 1215. doi: 10.3390/met9111215
    [29]
    N. Fan, B.Q. Xiong, Z.H. Li, et al., Heat transfer behavior during water spray quenching of 7xxx aluminum alloy plates, J. Therm. Sci. Eng. Appl., 14(2022), No. 4, art. No. 041013. doi: 10.1115/1.4051824
    [30]
    Y.N. Li, Y.A. Zhang, X.W. Li, et al., Effects of heat transfer coefficients on quenching residual stresses in 7055 aluminum alloy, Mater. Sci. Forum, 877(2016), p. 647. doi: 10.4028/www.scientific.net/MSF.877.647
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(446) PDF Downloads(26) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return