Nursultan E. Sagatov, Tatyana B. Bekker, Yulia G. Vinogradova, Alexey V. Davydov, Ivan V. Podborodnikov,  and Konstantin D. Litasov, Experimental and ab initio study of Ba2Na3(B3O6)2F stability in the pressure range of 0–10 GPa, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1846-1854. https://doi.org/10.1007/s12613-023-2647-0
Cite this article as:
Nursultan E. Sagatov, Tatyana B. Bekker, Yulia G. Vinogradova, Alexey V. Davydov, Ivan V. Podborodnikov,  and Konstantin D. Litasov, Experimental and ab initio study of Ba2Na3(B3O6)2F stability in the pressure range of 0–10 GPa, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1846-1854. https://doi.org/10.1007/s12613-023-2647-0
Research Article

Experimental and ab initio study of Ba2Na3(B3O6)2F stability in the pressure range of 0–10 GPa

+ Author Affiliations
  • Corresponding author:

    Nursultan E. Sagatov    E-mail: sagatinho23@gmail.com

  • Received: 9 December 2022Revised: 3 April 2023Accepted: 7 April 2023Available online: 8 April 2023
  • Both numerical and experimental studies of the stability and electronic properties of barium–sodium metaborate Ba2Na3(B3O6)2F (P63/m) at pressures up to 10 GPa have been carried out. Electronic-structure calculations with HSE06 hybrid functional showed that Ba2Na3(B3O6)2F has an indirect band gap of 6.289 eV. A numerical study revealed the decomposition of Ba2Na3(B3O6)2F into the BaB2O4, NaBO2, and NaF phases above 3.4 GPa at 300 K. Subsequent high-pressure high-temperature experiments performed using ‘Discoverer-1500’ DIA-type apparatus at pressures of 3 and 6 GPa and temperature of 1173 K confirmed the stability of Ba2Na3(B3O6)2F at 3 GPa and its decomposition into BaB2O4, NaBO2, and NaF at 6 GPa, which was verified by energy-dispersive X-ray analysis and Raman spectroscopy. The observed Raman bands of the Ba2Na3(B3O6)2F phase were assigned by comparing the experimental and calculated spectra. The experimental Raman spectra of decomposition reaction products obtained at 6 GPa suggest the origin of a new high-pressure modification of barium metaborate BaB2O4.
  • loading
  • Supplementary Information-10.1007s12613-023-2647-0.rar
    Supplementary Information-10.1007s12613-023-2647-0.docx
  • [1]
    T.B. Bekker, A.E. Kokh, N.G. Kononova, P.P. Fedorov, and S.V. Kuznetsov, Crystal growth and phase equilibria in the BaB2O4–NaF system, Cryst. Growth Des., 9(2009), No. 9, p. 4060. doi: 10.1021/cg9002675
    [2]
    X. Wang, M.J. Xia, and R.K. Li, A promising birefringent crystal Ba2Na3(B3O6)2F, Opt. Mater., 38(2014), p. 6. doi: 10.1016/j.optmat.2014.09.014
    [3]
    H. Zhang, M. Zhang, S.L. Pan, et al., Na3Ba2(B3O6)2F: Next generation of deep-ultraviolet birefringent materials, Cryst. Growth Des., 15(2015), No. 1, p. 523. doi: 10.1021/cg5016912
    [4]
    T.B. Bekker, V.N. Vedenyapin, and A.G. Khamoyan, Birefringence of the new fluoride borates Ba2Na3[B3O6]2F and Ba7(BO3)4−yF2+3y in the Na, Ba, B//O, F quaternary reciprocal system, Mater. Res. Bull., 91(2017), p. 54. doi: 10.1016/j.materresbull.2017.03.024
    [5]
    V.D. Antsygin, A.A. Mamrashev, N.A. Nikolaev, O.I. Potaturkin, T.B. Bekker, and V.P. Solntsev, Optical properties of borate crystals in terahertz region, Opt. Commun., 309(2013), p. 333. doi: 10.1016/j.optcom.2013.08.014
    [6]
    M. Marezio, H.A. Plettinger, and W.H. Zachariasen, The bond lengths in the sodium metaborate structure, Acta Crystallogr., 16(1963), No. 7, p. 594. doi: 10.1107/S0365110X63001596
    [7]
    W. Schneider and G.B. Carpenter, Bond lengths and thermal parameters of potassium metaborate, K3B3O6, Acta Crystallogr. Sect. B, 26(1970), No. 8, p. 1189. doi: 10.1107/S0567740870003849
    [8]
    S. Schmid and W. Schnick, Rubidium metaborate, Rb3B3O6, Acta Crystallogr. C, 60(2004), No. Pt7, p. i69.
    [9]
    M. Schläger and R. Hoppe, Darstellung und kristallstruktur von CsBO2, Z. Anorg. Allg. Chem., 620(1994), No. 11, p. 1867. doi: 10.1002/zaac.19946201106
    [10]
    A.D. Mighell, A. Perloff, and S. Block, The crystal structure of the high temperature form of Barium borate, BaO·B2O3, Acta Crystallogr., 20(1966), No. 6, p. 819. doi: 10.1107/S0365110X66001920
    [11]
    R. Bubnova, S. Volkov, B. Albert, and S. Filatov, Borates—Crystal structures of prospective nonlinear optical materials: High anisotropy of the thermal expansion caused by anharmonic atomic vibrations, Crystals, 7(2017), No. 3, art. No. 93. doi: 10.3390/cryst7030093
    [12]
    J. Liebertz, Struktur und kristallchemie von Ba2M(B3O6)2 mit M = Ca, Cd, Mg, Co and Ni, Z. Kristallogr. Cryst. Mater., 168(1984), No. 1-4, p. 293. doi: 10.1524/zkri.1984.168.14.293
    [13]
    G. Sohr, D.M. Többens, J. Schmedt auf der Günne, and H. Huppertz, HP-CsB5O8: Synthesis and characterization of an outstanding borate exhibiting the simultaneous linkage of all structural units of borates, Chem. Eur. J., 20(2014), No. 51, p. 17059. doi: 10.1002/chem.201404018
    [14]
    H.F. Dong, A.R. Oganov, V.V. Brazhkin, et al., Boron oxides under pressure: Prediction of the hardest oxides, Phys. Rev. B, 98(2018), No. 17, art. No. 174109. doi: 10.1103/PhysRevB.98.174109
    [15]
    D. Vitzthum, K. Wurst, J.M. Pann, P. Brüggeller, M. Seibald, and H. Huppertz, Exploration into the syntheses of gallium- and indiumborates under extreme conditions: M5B12O25(OH): Structure, luminescence, and surprising photocatalytic properties, Angew. Chem. Int. Ed., 57(2018), No. 35, p. 11451. doi: 10.1002/anie.201804083
    [16]
    N.E. Sagatov, T.B. Bekker, I.V. Podborodnikov, and K.D. Litasov, First-principles investigation of pressure-induced structural transformations of barium borates in the BaO–B2O3–BaF2 system in the range of 0–10 GPa, Comput. Mater. Sci., 199(2021), art. No. 110735. doi: 10.1016/j.commatsci.2021.110735
    [17]
    T.B. Bekker, I.V. Podborodnikov, N.E. Sagatov, et al., γ-BaB2O4: High-pressure high-temperature polymorph of barium borate with edge-sharing BO4 tetrahedra, Inorg. Chem., 61(2022), No. 4, p. 2340. doi: 10.1021/acs.inorgchem.1c03760
    [18]
    H. Huppertz and B. von der Eltz, Multianvil high-pressure synthesis of Dy4B6O15: The first oxoborate with edge-sharing BO4 tetrahedra, J. Am. Chem. Soc., 124(2002), No. 32, p. 9376. doi: 10.1021/ja017691z
    [19]
    G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54(1996), No. 16, p. 11169. doi: 10.1103/PhysRevB.54.11169
    [20]
    G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59(1999), No. 3, p. 1758. doi: 10.1103/PhysRevB.59.1758
    [21]
    J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865. doi: 10.1103/PhysRevLett.77.3865
    [22]
    H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13(1976), No. 12, p. 5188. doi: 10.1103/PhysRevB.13.5188
    [23]
    A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, and G.E. Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals, J. Chem. Phys., 125(2006), No. 22, art. No. 224106. doi: 10.1063/1.2404663
    [24]
    V. Wang, N. Xu, J.C. Liu, G. Tang, and W.T. Geng, VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code, Comput. Phys. Commun., 267(2021), art. No. 108033. doi: 10.1016/j.cpc.2021.108033
    [25]
    F.W. Aquino, R. Shinde, and B.M. Wong, Fractional occupation numbers and self-interaction correction-scaling methods with the Fermi-Löwdin orbital self-interaction correction approach, J. Comput. Chem., 41(2020), No. 12, p. 1200. doi: 10.1002/jcc.26168
    [26]
    B.G. Janesko, Replacing hybrid density functional theory: Motivation and recent advances, Chem. Soc. Rev., 50(2021), No. 15, p. 8470. doi: 10.1039/D0CS01074J
    [27]
    R. Shinde, S.S.R.K.C. Yamijala, and B.M. Wong, Improved band gaps and structural properties from Wannier–Fermi–Löwdin self-interaction corrections for periodic systems, J. Phys.: Condens. Matter, 33(2021), No. 11, art. No. 115501. doi: 10.1088/1361-648X/abc407
    [28]
    A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater., 108(2015), p. 1. doi: 10.1016/j.scriptamat.2015.07.021
    [29]
    A. Fonari and S. Stauffer, Vasp_raman.py, 2013 [2016-09-21]. https://github.com/raman-sc.
    [30]
    Q.J. Zheng, VaspVib2XSF, 2020 [2022-11-08]. https://github.com/QijingZheng/VaspVib2XSF.
    [31]
    A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Modelling Simul. Mater. Sci. Eng., 18(2010), No. 1, art. No. 015012. doi: 10.1088/0965-0393/18/1/015012
    [32]
    J.M. Leger, J. Haines, A. Atouf, O. Schulte, and S. Hull, High-pressure X-ray- and neutron-diffraction studies of BaF2: An example of a coordination number of 11 in AX2 compounds, Phys. Rev. B, 52(1995), No. 18, p. 13247. doi: 10.1103/PhysRevB.52.13247
    [33]
    V.T. Deshpande, Thermal expansion of sodium fluoride and sodium bromide, Acta Crystallogr., 14(1961), No. 7, art. No. 794. doi: 10.1107/S0365110X61002357
    [34]
    S.M. Fang, The crystal structure of sodium metaborate Na3(B3O6), Z. Kristallogr. Cryst. Mater., 99(1938), No. 1-6, p. 1. doi: 10.1524/zkri.1938.99.1.1
    [35]
    F. Mouhat and F.X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B, 90(2014), No. 22, art. No. 224104. doi: 10.1103/PhysRevB.90.224104
    [36]
    T.B. Bekker, T.M. Inerbaev, A.P. Yelisseyev, et al., Experimental and ab initio studies of intrinsic defects in “antizeolite” borates with a Ba12(BO3)$ {}_6^{6+} $ framework and their influence on properties, Inorg. Chem., 59(2020), No. 18, p. 13598. doi: 10.1021/acs.inorgchem.0c01966
    [37]
    C. Wu, J.L. Song, L.H. Li, M.G. Humphrey, and C. Zhang, Alkali metal-alkaline earth metal borate crystal LiBa3(OH)(B9O16)[B(OH)4]as a new deep-UV nonlinear optical material, J. Mater. Chem. C, 4(2016), No. 35, p. 8189. doi: 10.1039/C6TC02306A
    [38]
    A. Jain, S.P. Ong, G. Hautier, et al., Commentary: The materials project: A materials genome approach to accelerating materials innovation, APL Mater., 1(2013), No. 1, art. No. 011002. doi: 10.1063/1.4812323
    [39]
    S.M. Wan, X.A. Zhang, S.J. Zhao, et al., Growth units and growth habit of α-BaB2O4 crystal, J. Appl. Crystallogr., 40(2007), No. 4, p. 725. doi: 10.1107/S0021889807024995
    [40]
    X.S. Lv, Y.L. Sun, J. Han, et al., Growth and Raman spectrum of Ba2Mg(B3O6)2 crystal, J. Cryst. Growth, 363(2013), p. 220. doi: 10.1016/j.jcrysgro.2012.10.049
    [41]
    P. Ney, M.D. Fontana, A. Maillard, and K. Polgár, Assignment of the Raman lines in single crystal barium metaborate, J. Phys.: Condens. Matter, 10(1998), No. 3, p. 673. doi: 10.1088/0953-8984/10/3/018
    [42]
    Y.K. Voronko, A.A. Sobol, and V.E. Shukshin, Structure of boron–oxygen groups in crystalline, molten, and glassy alkali-metal and alkaline-earth metaborates, Inorg. Mater., 48(2012), No. 7, p. 732. doi: 10.1134/S0020168512060210
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(594) PDF Downloads(28) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return