Xun Zhang, Yakang Li, Wei Zhao, Jiaxin Guo, Pengfei Yin, and Tao Ling, Technical factors affecting the performance of anion exchange membrane water electrolyzer, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2259-2269. https://doi.org/10.1007/s12613-023-2648-z
Cite this article as:
Xun Zhang, Yakang Li, Wei Zhao, Jiaxin Guo, Pengfei Yin, and Tao Ling, Technical factors affecting the performance of anion exchange membrane water electrolyzer, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2259-2269. https://doi.org/10.1007/s12613-023-2648-z
Research Article

Technical factors affecting the performance of anion exchange membrane water electrolyzer

+ Author Affiliations
  • Anion exchange membrane (AEM) electrolysis is a promising membrane-based green hydrogen production technology. However, AEM electrolysis still remains in its infancy, and the performance of AEM electrolyzers is far behind that of well-developed alkaline and proton exchange membrane electrolyzers. Therefore, breaking through the technical barriers of AEM electrolyzers is critical. On the basis of the analysis of the electrochemical performance tested in a single cell, electrochemical impedance spectroscopy, and the number of active sites, we evaluated the main technical factors that affect AEM electrolyzers. These factors included catalyst layer manufacturing (e.g., catalyst, carbon black, and anionic ionomer) loadings, membrane electrode assembly, and testing conditions (e.g., the KOH concentration in the electrolyte, electrolyte feeding mode, and operating temperature). The underlying mechanisms of the effects of these factors on AEM electrolyzer performance were also revealed. The irreversible voltage loss in the AEM electrolyzer was concluded to be mainly associated with the kinetics of the electrode reaction and the transport of electrons, ions, and gas-phase products involved in electrolysis. Based on the study results, the performance and stability of AEM electrolyzers were significantly improved.
  • loading
  • Supplementary Information-10.1007s12613-023-2648-z.docx
  • [1]
    Y.X. Yang, P. Li, X.B. Zheng, et al., Anion-exchange membrane water electrolyzers and fuel cells, Chem. Soc. Rev., 51(2022), No. 23, p. 9620. doi: 10.1039/D2CS00038E
    [2]
    X. Liu, G.Y. Liu, J.L. Xue, X.D. Wang, and Q.F. Li, Hydrogen as a carrier of renewable energies toward carbon neutrality: State-of-the-art and challenging issues, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1073. doi: 10.1007/s12613-022-2449-9
    [3]
    J.X. Guo, Y. Zheng, Z.P. Hu, et al., Direct seawater electrolysis by adjusting the local reaction environment of a catalyst, Nat. Energy, 8(2023), No. 3, p. 264.
    [4]
    W.M. Tong, M. Forster, F. Dionigi, et al., Electrolysis of low-grade and saline surface water, Nat. Energy, 5(2020), No. 5, p. 367. doi: 10.1038/s41560-020-0550-8
    [5]
    N.Y. Du, C. Roy, R. Peach, M. Turnbull, S. Thiele, and C. Bock, Anion-exchange membrane water electrolyzers, Chem. Rev., 122(2022), No. 13, p. 11830. doi: 10.1021/acs.chemrev.1c00854
    [6]
    S.S. Kumar and V. Himabindu, Hydrogen production by PEM water electrolysis – A review, Mater. Sci. Energy Technol., 2(2019), No. 3, p. 442.
    [7]
    H. Nguyen, C. Klose, L. Metzler, S. Vierrath, and M. Breitwieser, Fully hydrocarbon membrane electrode assemblies for proton exchange membrane fuel cells and electrolyzers: An engineering perspective, Adv. Energy Mater., 12(2022), No. 12, art. No. 2103559. doi: 10.1002/aenm.202103559
    [8]
    Q.C. Xu, L.Y. Zhang, J.H. Zhang, et al., Anion exchange membrane water electrolyzer: Electrode design, lab-scaled testing system and performance evaluation, EnergyChem, 4(2022), No. 5, art. No. 100087. doi: 10.1016/j.enchem.2022.100087
    [9]
    M. Carmo, D.L. Fritz, J. Mergel, and D. Stolten, A comprehensive review on PEM water electrolysis, Int. J. Hydrogen Energy, 38(2013), No. 12, p. 4901. doi: 10.1016/j.ijhydene.2013.01.151
    [10]
    R.R.R. Sulaiman, W.Y. Wong, and K.S. Loh, Recent developments on transition metal-based electrocatalysts for application in anion exchange membrane water electrolysis, Int. J. Energy Res., 46(2022), No. 3, p. 2241. doi: 10.1002/er.7380
    [11]
    L.H. Liu, N. Li, J.R. Han, K.L. Yao, and H.Y. Liang, Multicomponent transition metal phosphide for oxygen evolution, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 503. doi: 10.1007/s12613-021-2352-9
    [12]
    D.G. Li, A.R. Motz, C. Bae, et al., Durability of anion exchange membrane water electrolyzers, Energy Environ. Sci., 14(2021), No. 6, p. 3393. doi: 10.1039/D0EE04086J
    [13]
    J.E. Park, S.Y. Kang, S.H. Oh, et al., High-performance anion-exchange membrane water electrolysis, Electrochim. Acta, 295(2019), p. 99. doi: 10.1016/j.electacta.2018.10.143
    [14]
    I. Vincent, E.C. Lee, and H.M. Kim, Comprehensive impedance investigation of low-cost anion exchange membrane electrolysis for large-scale hydrogen production, Sci. Rep., 11(2021), No. 1, art. No. 293. doi: 10.1038/s41598-020-80683-6
    [15]
    C.Q. Li and J.B. Baek, The promise of hydrogen production from alkaline anion exchange membrane electrolyzers, Nano Energy, 87(2021), art. No. 106162. doi: 10.1016/j.nanoen.2021.106162
    [16]
    S.Y. Kang, J.E. Park, G.Y. Jang, et al., High-performance and durable water electrolysis using a highly conductive and stable anion-exchange membrane, Int. J. Hydrogen Energy, 47(2022), No. 15, p. 9115. doi: 10.1016/j.ijhydene.2022.01.002
    [17]
    D.G. Li, E.J. Park, W.L. Zhu, et al., Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers, Nat. Energy, 5(2020), No. 5, p. 378. doi: 10.1038/s41560-020-0577-x
    [18]
    Y.M. Dong, K. He, L. Yin, and A.M. Zhang, A facile route to controlled synthesis of Co3O4 nanoparticles and their environmental catalytic properties, Nanotechnology, 18(2007), No. 43, art. No. 435602. doi: 10.1088/0957-4484/18/43/435602
    [19]
    Z. Li, Y. Zhang, Y. Feng, et al., Co3O4 nanoparticles with ultrasmall size and abundant oxygen vacancies for boosting oxygen involved reactions, Adv. Funct. Mater., 29(2019), No. 36, art. No. 1903444. doi: 10.1002/adfm.201903444
    [20]
    A.J. Esswein, M.J. McMurdo, P.N. Ross, A.T. Bell, and T.D. Tilley, Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis, J. Phys. Chem. C, 113(2009), No. 33, p. 15068. doi: 10.1021/jp904022e
    [21]
    P. Lettenmeier, S. Kolb, N. Sata, et al., Comprehensive investigation of novel pore-graded gas diffusion layers for high-performance and cost-effective proton exchange membrane electrolyzers, Energy Environ. Sci., 10(2017), No. 12, p. 2521. doi: 10.1039/C7EE01240C
    [22]
    H. Liu, H.B. Tao, and B. Liu, Kinetic insights of proton exchange membrane water electrolyzer obtained by operando characterization methods, J. Phys. Chem. Lett., 13(2022), No. 28, p. 6520. doi: 10.1021/acs.jpclett.2c01341
    [23]
    B. Han, S.M. Steen, J.K. Mo, and F.Y. Zhang, Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy, Int. J. Hydrogen Energy, 40(2015), No. 22, p. 7006. doi: 10.1016/j.ijhydene.2015.03.164
    [24]
    R.A. Krivina, G.A. Lindquist, S.R. Beaudoin, et al., Anode catalysts in anion-exchange-membrane electrolysis without supporting electrolyte: Conductivity, dynamics, and ionomer degradation, Adv. Mater., 34(2022), No. 35, art. No. 2203033. doi: 10.1002/adma.202203033
    [25]
    S.M. Alia, M.A. Ha, C. Ngo, G.C. Anderson, S. Ghoshal, and S. Pylypenko, Platinum–nickel nanowires with improved hydrogen evolution performance in anion exchange membrane-based electrolysis, ACS Catal., 10(2020), No. 17, p. 9953. doi: 10.1021/acscatal.0c01568
    [26]
    K. Karthick, S. Anantharaj, P.E. Karthik, B. Subramanian, and S. Kundu, Self-assembled molecular hybrids of CoS-DNA for enhanced water oxidation with low cobalt content, Inorg. Chem., 56(2017), No. 11, p. 6734. doi: 10.1021/acs.inorgchem.7b00855
    [27]
    J.J. Liu, Z.Y. Kang, D.G. Li, et al., Elucidating the role of hydroxide electrolyte on anion-exchange-membrane water electrolyzer performance, J. Electrochem. Soc., 168(2021), No. 5, art. No. 054522. doi: 10.1149/1945-7111/ac0019
    [28]
    S. Siracusano, S. Trocino, N. Briguglio, V. Baglio, and A.S. Aricò, Electrochemical impedance spectroscopy as a diagnostic tool in polymer electrolyte membrane electrolysis, Materials, 11(2018), No. 8, art. No. 1368. doi: 10.3390/ma11081368
    [29]
    I. Dedigama, D.J.L. Brett, T.J. Mason, J. Millichamp, P.R. Shearing, and K.E. Ayers, An electrochemical impedance spectroscopy study and two phase flow analysis of the anode of polymer electrolyte membrane water electrolyser, ECS Trans., 68(2015), No. 3, p. 117. doi: 10.1149/06803.0117ecst
    [30]
    M. Bernt, A. Siebel, and H.A. Gasteiger, Analysis of voltage losses in PEM water electrolyzers with low platinum group metal loadings, J. Electrochem. Soc., 165(2018), No. 5, p. F305. doi: 10.1149/2.0641805jes
    [31]
    T.Y. Ma, S. Dai, M. Jaroniec, and S.Z. Qiao, Metal-organic framework derived hybrid Co3O4–carbon porous nanowire arrays as reversible oxygen evolution electrodes, J. Am. Chem. Soc., 136(2014), No. 39, p. 13925. doi: 10.1021/ja5082553
    [32]
    Z.Y. Li, K.H. Ye, Q.S. Zhong, C.J. Zhang, S.T. Shi, and C.W. Xu, Au–Co3O4/C as an efficient electrocatalyst for the oxygen evolution reaction, ChemPlusChem, 79(2014), No. 11, p. 1569. doi: 10.1002/cplu.201402136
    [33]
    P.Q. Chen, Y.X. Tai, H. Wu, Y.F. Gao, J.Y. Chen, and J.G. Cheng, Novel confinement combustion method of nanosized WC/C for efficient electrocatalytic oxygen reduction, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1627. doi: 10.1007/s12613-021-2265-7
    [34]
    J.O. Majasan, J.I.S. Cho, M. Maier, I. Dedigama, P.R. Shearing, and D.J.L. Brett, Effect of anode flow channel depth on the performance of polymer electrolyte membrane water electrolyser, ECS Trans., 85(2018), No. 13, p. 1593. doi: 10.1149/08513.1593ecst
    [35]
    E. Cossar, A.O. Barnett, F. Seland, R. Safari, G.A. Botton, and E.A. Baranova, Ionomer content optimization in nickel-iron-based anodes with and without ceria for anion exchange membrane water electrolysis, J. Power Sources, 514(2021), art. No. 230563. doi: 10.1016/j.jpowsour.2021.230563
    [36]
    E. Cossar, F. Murphy, J. Walia, A. Weck, and E.A. Baranova, Role of ionomers in anion exchange membrane water electrolysis: Is aemion the answer for nickel-based anodes? ACS Appl. Energy Mater., 5(2022), No. 8, p. 9938. doi: 10.1021/acsaem.2c01604
    [37]
    S. Koch, P.A. Heizmann, S.K. Kilian, et al., The effect of ionomer content in catalyst layers in anion-exchange membrane water electrolyzers prepared with reinforced membranes (Aemion+TM), J. Mater. Chem. A, 9(2021), No. 28, p. 15744. doi: 10.1039/D1TA01861B
    [38]
    E. Leonard, A.D. Shum, N. Danilovic, et al., Interfacial analysis of a PEM electrolyzer using X-ray computed tomography, Sustainable Energy Fuels, 4(2020), No. 2, p. 921. doi: 10.1039/C9SE00364A
    [39]
    A. Kiessling, J.C. Fornaciari, G. Anderson, et al., Influence of supporting electrolyte on hydroxide exchange membrane water electrolysis performance: Anolyte, J. Electrochem. Soc., 168(2021), No. 8, art. No. 084512. doi: 10.1149/1945-7111/ac1dcd
    [40]
    F. Razmjooei, R. Reißner, A.S. Gago, and A. Ansar, Highly active binder free plasma sprayed non-noble metal electrodes for anion exchange membrane electrolysis at different reduced KOH concentrations, ECS Trans., 92(2019), No. 8, p. 689. doi: 10.1149/09208.0689ecst
    [41]
    J.K. Lee, C. Lee, and A. Bazylak, Pore network modelling to enhance liquid water transport through porous transport layers for polymer electrolyte membrane electrolyzers, J. Power Sources, 437(2019), art. No. 226910. doi: 10.1016/j.jpowsour.2019.226910
    [42]
    D.K. Zhang and K. Zeng, Evaluating the behavior of electrolytic gas bubbles and their effect on the cell voltage in alkaline water electrolysis, Ind. Eng. Chem. Res., 51(2012), No. 42, p. 13825. doi: 10.1021/ie301029e
    [43]
    M.K. Cho, H.Y. Park, H.J. Lee, et al., Alkaline anion exchange membrane water electrolysis: Effects of electrolyte feed method and electrode binder content, J. Power Sources, 382(2018), p. 22. doi: 10.1016/j.jpowsour.2018.02.025
    [44]
    D.G. Li, I. Matanovic, A.S. Lee, et al., Phenyl oxidation impacts the durability of alkaline membrane water electrolyzer, ACS Appl. Mater. Interfaces, 11(2019), No. 10, p. 9696. doi: 10.1021/acsami.9b00711
    [45]
    A.D. Mohanty, S.E. Tignor, J.A. Krause, Y.K. Choe, and C. Bae, Systematic alkaline stability study of polymer backbones for anion exchange membrane applications, Macromolecules, 49(2016), No. 9, p. 3361. doi: 10.1021/acs.macromol.5b02550
    [46]
    S. Maurya, A.S. Lee, D.G. Li, et al., On the origin of permanent performance loss of anion exchange membrane fuel cells: Electrochemical oxidation of phenyl group, J. Power Sources, 436(2019), art. No. 226866. doi: 10.1016/j.jpowsour.2019.226866
    [47]
    X. Hu, Y.D. Huang, L. Liu, et al., Piperidinium functionalized aryl ether-free polyaromatics as anion exchange membrane for water electrolysers: Performance and durability, J. Membr. Sci., 621(2021), art. No. 118964. doi: 10.1016/j.memsci.2020.118964
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Share Article

    Article Metrics

    Article Views(1933) PDF Downloads(251) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return