Yuji Bai, Zhixiu Wang, Bo Jiang, Mengqi Li, Cong Zhu, Xiaotong Gu,  and Hai Li, Anisotropy of mechanical properties of 2297-T87 Al–Li alloy thick plates, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2212-2223. https://doi.org/10.1007/s12613-023-2652-3
Cite this article as:
Yuji Bai, Zhixiu Wang, Bo Jiang, Mengqi Li, Cong Zhu, Xiaotong Gu,  and Hai Li, Anisotropy of mechanical properties of 2297-T87 Al–Li alloy thick plates, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2212-2223. https://doi.org/10.1007/s12613-023-2652-3
Research Article

Anisotropy of mechanical properties of 2297-T87 Al–Li alloy thick plates

+ Author Affiliations
  • Corresponding author:

    Hai Li    E-mail: Lehigh_73@163.com

  • Received: 3 February 2023Revised: 23 March 2023Accepted: 11 April 2023Available online: 12 April 2023
  • The tensile properties of 2297-T87 Al–Li alloy thick plates at different thickness position and in different direction were analyzed via tensile testing, optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and transmission electron microscopy (TEM). Results indicated that the ultimate tensile strength (UTS) and yield strength (YS) of the alloy decreased firstly and then increased from the 1/8T position to the 1/2T position, whereas elongation to failure (Ef) decreased gradually such that its value along the rolling direction (RD) was higher than those along the transverse direction (TD) at the same thickness position. From the 1/8T position to the 3/8T position of the alloy, the UTS and YS along the TD were higher than those along the RD. At the 1/2T position of the alloy, the UTS, YS, and Ef along the RD were the highest, whereas those along the normal direction (ND) were the lowest. Microstructural observations further revealed that the anisotropy of tensile properties was related to grain morphology, crystal texture, second-phase particles, and Li atom segregation.
  • loading
  • [1]
    A.A. El-Aty, Y. Xu, X.Z. Guo, S.H. Zhang, Y. Ma, and D.Y. Chen, Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al–Li alloys: A review, J. Adv. Res., 10(2018), p. 49. doi: 10.1016/j.jare.2017.12.004
    [2]
    R.J. Rioja and J. Liu, The evolution of Al–Li base products for aerospace and space applications, Metall. Mater. Trans. A, 43(2012), No. 9, p. 3325. doi: 10.1007/s11661-012-1155-z
    [3]
    A. Deschamps, C. Sigli, T. Mourey, F. de Geuser, W. Lefebvre, and B. Davo, Experimental and modelling assessment of precipitation kinetics in an Al–Li–Mg alloy, Acta Mater., 60(2012), No. 5, p. 1917. doi: 10.1016/j.actamat.2012.01.010
    [4]
    J. Han, Z.X. Zhu, H.J. Li, and C. Gao, Microstructural evolution, mechanical property and thermal stability of Al–Li 2198-T8 alloy processed by high pressure torsion, Mater. Sci. Eng. A, 651(2016), p. 435. doi: 10.1016/j.msea.2015.10.112
    [5]
    X.Y. Zhang, T. Huang, W.X. Yang, R.S. Xiao, Z. Liu, and L. Li, Microstructure and mechanical properties of laser beam-welded AA2060 Al–Li alloy, J. Mater. Process. Technol., 237(2016), p. 301. doi: 10.1016/j.jmatprotec.2016.06.021
    [6]
    J. Goebel, T. Ghidini, and A.J. Graham, Stress-corrosion cracking characterisation of the advanced aerospace Al–Li 2099-T86 alloy, Mater. Sci. Eng. A, 673(2016), p. 16. doi: 10.1016/j.msea.2016.07.013
    [7]
    Y. Yang, F. Ma, H.B. Hu, Q.M. Zhang, and X.W. Zhang, Microstructure evolution of 2195 Al–Li alloy subjected to high-strain-rate deformation, Mater. Sci. Eng. A, 606(2014), p. 299. doi: 10.1016/j.msea.2014.03.118
    [8]
    J.C. Williams and E.A. Starke, Progress in structural materials for aerospace systems, Acta Mater., 51(2003), No. 19, p. 5775. doi: 10.1016/j.actamat.2003.08.023
    [9]
    R.J. Rioja, Fabrication methods to manufacture isotropic Al–Li alloys and products for space and aerospace applications, Mater. Sci. Eng. A, 257(1998), No. 1, p. 100. doi: 10.1016/S0921-5093(98)00827-2
    [10]
    D.J. Chakrabarti, H. Weiland, B.A. Cheney, and J.T. Staley, Through thickness property variations in 7050 plate, Mater. Sci. Forum, 217-222(1996), p. 1085. doi: 10.4028/www.scientific.net/MSF.217-222.1085
    [11]
    K.K. Cho, Y.H. Chung, C.W. Lee, S.I. Kwun, and M.C. Shin, Effects of grain shape and texture on the yield strength anisotropy of Al–Li alloy sheet, Scripta Mater., 40(1999), No. 6, p. 651. doi: 10.1016/S1359-6462(98)00481-3
    [12]
    A. Bois-Brochu, C. Blais, F.A.T. Goma, D. Larouche, J. Boselli, and M. Brochu, Characterization of Al–Li 2099 extrusions and the influence of fiber texture on the anisotropy of static mechanical properties, Mater. Sci. Eng. A, 597(2014), p. 62. doi: 10.1016/j.msea.2013.12.060
    [13]
    P.F. Wu, Y.L. Deng, J. Zhang, S.T. Fan, and X.M. Zhang, The effect of inhomogeneous microstructures on strength and fatigue properties of an Al–Cu–Li thick plate, Mater. Sci. Eng. A, 731(2018), p. 1. doi: 10.1016/j.msea.2018.06.033
    [14]
    D. Wang, C. Gao, H.Y. Luo, Y.H. Yang, and Y. Ma, Texture evolution behavior and anisotropy of 2A97 Al–Li alloy during recrystallization at elevated temperature, Rare Met., (2018), p. 1.
    [15]
    T.Z. Zhao, L. Jin, Y. Xu, and S.H. Zhang, Anisotropic yielding stress of 2198 Al–Li alloy sheet and mechanisms, Mater. Sci. Eng. A, 771(2020), art. No. 138572. doi: 10.1016/j.msea.2019.138572
    [16]
    X. Xu, M. Hao, J. Chen, et al., Influence of microstructural and crystallographic inhomogeneity on tensile anisotropy in thick-section Al–Li–Cu–Mg plates, Mater. Sci. Eng. A, 829(2022), art. No. 142135. doi: 10.1016/j.msea.2021.142135
    [17]
    J. Ma, Q. Wang, T.Y. Zhang, H. Cao, Y.B. Yang, and Z.M. Zhang, Effect of natural aging time on tensile and fatigue anisotropy of extruded 7075 Al alloy, J. Mater. Res. Technol., 18(2022), p. 4683. doi: 10.1016/j.jmrt.2022.04.151
    [18]
    L. Chen, S.W. Yuan, D.M. Kong, G.Q. Zhao, Y.Y. He, and C.S. Zhang, Influence of aging treatment on the microstructure, mechanical properties and anisotropy of hot extruded Al–Mg–Si plate, Mater. Des., 182(2019), art. No. 107999. doi: 10.1016/j.matdes.2019.107999
    [19]
    G. Huang, Z.H. Li, L.M. Sun, et al., Fatigue crack growth behavior of 2624-T39 aluminum alloy with different grain sizes, Rare Met., 40(2021), No. 9, p. 2523. doi: 10.1007/s12598-020-01496-0
    [20]
    Z.H. Li, B.Q. Xiong, Y.A. Zhang, B.H. Zhu, F. Wang, and H.W. Liu, Investigation on strength, toughness and microstructure of an Al–Zn–Mg–Cu alloy pre-stretched thick plates in various ageing tempers, J. Mater. Process. Technol., 209(2009), No. 4, p. 2021. doi: 10.1016/j.jmatprotec.2008.04.052
    [21]
    D. Dumont, A. Deschamps, and Y. Brechet, On the relationship between microstructure, strength and toughness in AA7050 aluminum alloy, Mater. Sci. Eng. A, 356(2003), No. 1-2, p. 326. doi: 10.1016/S0921-5093(03)00145-X
    [22]
    K. Zhao, J.H. Liu, M. Yu, and S.M. Li, Through-thickness inhomogeneity of precipitate distribution and pitting corrosion behavior of Al–Li alloy thick plate, Trans. Nonferrous Met. Soc. China, 29(2019), No. 9, p. 1793. doi: 10.1016/S1003-6326(19)65087-9
    [23]
    L. Meng and L. Tian, Stress concentration sensitivity of Al–Li based alloys with various contents of impurities and cerium addition, Mater. Sci. Eng. A, 323(2002), No. 1-2, p. 239. doi: 10.1016/S0921-5093(01)01398-3
    [24]
    D.D. Risanti, M. Yin, P.E.J.R.D. del Castillo, and S. van der Zwaag, A systematic study of the effect of interrupted ageing conditions on the strength and toughness development of AA6061, Mater. Sci. Eng. A, 523(2009), No. 1-2, p. 99. doi: 10.1016/j.msea.2009.06.044
    [25]
    A. Albedah, B.B. Bouiadjra, S.M.A.K. Mohammed, and F. Benyahia, Fractographic analysis of the overload effect on fatigue crack growth in 2024-T3 and 7075-T6 Al alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 83. doi: 10.1007/s12613-019-1896-4
    [26]
    A.W. Thompson, The relation between changes in ductility and in ductile fracture topography: Control by microvoid nucleation, Acta Metall., 31(1983), No. 10, p. 1517. doi: 10.1016/0001-6160(83)90148-7
    [27]
    H. Li, Q.Z. Mao, Z.X. Wang, F.F. Miao, B.J. Fang, and Z.Q. Zheng, Enhancing mechanical properties of Al–Mg–Si–Cu sheets by solution treatment substituting for recrystallization annealing before the final cold-rolling, Mater. Sci. Eng. A, 620(2015), p. 204. doi: 10.1016/j.msea.2014.10.012
    [28]
    C.S. Lee, R.E. Smallman, and B.J. Duggan, Effect of rolling geometry and surface friction on cube texture formation, Mater. Sci. Technol., 10(1994), No. 2, p. 149. doi: 10.1179/mst.1994.10.2.149
    [29]
    G.J. Li, M.X. Guo, Y. Wang, C.H. Zheng, J.S. Zhang, and L.Z. Zhuang, Effect of Ni addition on microstructure and mechanical properties of Al–Mg–Si–Cu–Zn alloys with a high Mg/Si ratio, Int. J. Miner. Metall. Mater., 26(2019), No. 6, p. 740. doi: 10.1007/s12613-019-1778-9
    [30]
    O. Engler, X.W. Kong, and K. Lücke, Recrystallisation textures of particle-containing Al–Cu and Al–Mn single crystals, Acta Mater., 49(2001), No. 10, p. 1701. doi: 10.1016/S1359-6454(01)00087-8
    [31]
    M.J. Starink and S.C. Wang, A model for the yield strength of overaged Al–Zn–Mg–Cu alloys, Acta Mater., 51(2003), No. 17, p. 5131. doi: 10.1016/S1359-6454(03)00363-X
    [32]
    N. Gao, M.J. Starink, L. Davin, A. Cerezo, S.C. Wang, and P.J. Gregson, Microstructure and precipitation in Al–Li–Cu–Mg–(Mn, Zr) alloys, Mater. Sci. Technol., 21(2005), No. 9, p. 1010. doi: 10.1179/174328405X27034
    [33]
    D.D. Lu, J.F. Li, H. Ning, et al., Effects of microstructure on tensile properties of AA2050-T84 Al−Li alloy, Trans. Nonferrous Met. Soc. China, 31(2021), No. 5, p. 1189. doi: 10.1016/S1003-6326(21)65571-1
    [34]
    K.S. Kumar, S.A. Brown, and J.R. Pickens, Microstructural evolution during aging of an AlCuLiAgMgZr alloy, Acta Mater., 44(1996), No. 5, p. 1899. doi: 10.1016/1359-6454(95)00319-3
    [35]
    Y.X. Wang, G.Q. Zhao, X. Xu, X.X. Chen, and W.D. Zhang, Microstructures and mechanical properties of spray deposited 2195 Al–Cu–Li alloy through thermo-mechanical processing, Mater. Sci. Eng. A, 727(2018), p. 78. doi: 10.1016/j.msea.2018.04.116
    [36]
    B.X. Xie, L. Huang, J.H. Xu, et al., Effect of the aging process and pre-deformation on the precipitated phase and mechanical properties of 2195 Al–Li alloy, Mater. Sci. Eng. A, 832(2022), art. No. 142394. doi: 10.1016/j.msea.2021.142394
    [37]
    W.B. Lei, X.T. Liu, W.M. Wang, Q. Sun, Y.Z. Xu, and J.Z. Cui, On the influences of Li on the microstructure and properties of hypoeutectic Al–7Si alloy, J. Alloys Compd., 729(2017), p. 703. doi: 10.1016/j.jallcom.2017.04.295
    [38]
    D. Tsivoulas, J.D. Robson, C. Sigli, and P.B. Prangnell, Interactions between zirconium and manganese dispersoid-forming elements on their combined addition in Al–Cu–Li alloys, Acta Mater., 60(2012), No. 13-14, p. 5245. doi: 10.1016/j.actamat.2012.06.012
    [39]
    S.W. Duan, K. Matsuda, T. Wang, and Y. Zou, Microstructures and mechanical properties of a cast Al–Cu–Li alloy during heat treatment procedure, Rare Met., 40(2021), No. 7, p. 1897. doi: 10.1007/s12598-020-01481-7
    [40]
    X.X. Zhang, X.R. Zhou, T. Hashimoto, et al., Corrosion behaviour of 2A97-T6 Al–Cu–Li alloy: The influence of non-uniform precipitation, Corros. Sci., 132(2018), p. 1. doi: 10.1016/j.corsci.2017.12.010
    [41]
    G. Yang, Z. Li, Y. Yuan, and Q. Lei, Microstructure, mechanical properties and electrical conductivity of Cu–0.3Mg–0.05Ce alloy processed by equal channel angular pressing and subsequent annealing, J. Alloys Compd., 640(2015), p. 347. doi: 10.1016/j.jallcom.2015.03.218
    [42]
    I.L. Dillamore, Factors affecting the rolling recrystallisation textures in F.C.C. metals, Acta Metall., 12(1964), No. 9, p. 1005. doi: 10.1016/0001-6160(64)90072-0
    [43]
    R.E. Smallman and D. Green, The dependence of rolling texture on stacking fault energy, Acta Metall., 12(1964), No. 2, p. 145. doi: 10.1016/0001-6160(64)90182-8
    [44]
    S. Birosca, F.D. Gioacchino, S. Stekovic, and M. Hardy, A quantitative approach to study the effect of local texture and heterogeneous plastic strain on the deformation micromechanism in RR1000 nickel-based superalloy, Acta Mater., 74(2014), p. 110. doi: 10.1016/j.actamat.2014.04.039
    [45]
    S. Sun, B.L. Adams, and W.E. King, Observations of lattice curvature near the interface of a deformed aluminium bicrystal, Philos. Mag. A, 80(2000), No. 1, p. 9. doi: 10.1080/01418610008212038
    [46]
    Q. Zhao, Z.Y. Liu, Y.C. Hu, F.D. Li, C. Luo, and S.S. Li, Texture effect on fatigue crack propagation in aluminium alloys: An overview, Mater. Sci. Technol., 35(2019), No. 15, p. 1789. doi: 10.1080/02670836.2019.1651954
    [47]
    Z. Cvijović, M. Vratnica, and M. Rakin, Micromechanical modelling of fracture toughness in overaged 7000 alloy forgings, Mater. Sci. Eng. A, 434(2006), No. 1-2, p. 339. doi: 10.1016/j.msea.2006.07.018
    [48]
    K. Wen, B.Q. Xiong, Y.A. Zhang, et al., Aging precipitation characteristics and tensile properties of Al–Zn–Mg–Cu alloys with different additional Zn contents, Rare Met., 40(2021), No. 8, p. 2160. doi: 10.1007/s12598-020-01495-1
    [49]
    A. Zindal, J. Jain, R. Prasad, et al., Effect of heat treatment variables on the formation of precipitate free zones (PFZs) in Mg–8Al–0.5Zn alloy, Mater. Charact., 136(2018), p. 175. doi: 10.1016/j.matchar.2017.12.018
    [50]
    S.P. Lynch, A.R. Wilson, and R.T. Byrnes, Effects of ageing treatments on resistance to intergranular fracture of 8090 Al–Li alloy plate, Mater. Sci. Eng. A, 172(1993), No. 1-2, p. 79. doi: 10.1016/0921-5093(93)90428-H
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(562) PDF Downloads(34) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return