Ranran Shi, Wei Lin, Zheng Liu, Junna Xu, Jianlei Kuang, Wenxiu Liu, Qi Wang,  and Wenbin Cao, Electromagnetic wave absorption and mechanical properties of SiC nanowire/low-melting-point glass composites sintered at 580°C in air, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1809-1815. https://doi.org/10.1007/s12613-023-2653-2
Cite this article as:
Ranran Shi, Wei Lin, Zheng Liu, Junna Xu, Jianlei Kuang, Wenxiu Liu, Qi Wang,  and Wenbin Cao, Electromagnetic wave absorption and mechanical properties of SiC nanowire/low-melting-point glass composites sintered at 580°C in air, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1809-1815. https://doi.org/10.1007/s12613-023-2653-2
Research Article

Electromagnetic wave absorption and mechanical properties of SiC nanowire/low-melting-point glass composites sintered at 580°C in air

+ Author Affiliations
  • Corresponding authors:

    Jianlei Kuang    E-mail: jlkuang@ustb.edu.cn

    Qi Wang    E-mail: wangqi15@ustb.edu.cn

    Wenbin Cao    E-mail: wbcao@ustb.edu.cn

  • Received: 4 October 2022Revised: 14 April 2023Accepted: 17 April 2023Available online: 18 April 2023
  • SiC nanowires are excellent high-temperature electromagnetic wave (EMW) absorbing materials. However, their polymer matrix composites are difficult to work at temperatures above 300°C, while their ceramic matrix composites must be prepared above 1000°C in an inert atmosphere. Thus, for addressing the abovementioned problems, SiC/low-melting-point glass composites were well designed and prepared at 580°C in an air atmosphere. Based on the X-ray diffraction results, SiC nanowires were not oxidized during air atmosphere sintering because of the low sintering temperature. Additionally, SiC nanowires were uniformly distributed in the glass matrix material. The composites exhibited good mechanical and EMW absorption properties. As the filling ratio of SiC nanowires increased from 5wt% to 20wt%, the Vickers hardness and flexural strength of the composite reached HV 564 and 213 MPa, which were improved by 27.7% and 72.8%, respectively, compared with the low-melting-point glass. Meanwhile, the dielectric loss and EMW absorption ability of SiC nanowires at 8.2–12.4 GHz were also gradually improved. The dielectric loss ability of low-melting-point glass was close to 0. However, when the filling ratio of SiC nanowires was 20wt%, the composite showed a minimum reflection loss (RL) of −20.2 dB and an effective absorption (RL ≤ −10 dB) bandwidth of 2.3 GHz at an absorber layer thickness of 2.3 mm. The synergistic effect of polarization loss and conductivity loss in SiC nanowires was responsible for this improvement.
  • loading
  • [1]
    Z.G. Gao, K. Yang, Z.H. Zhao, et al., Design principles in MOF-derived electromagnetic wave absorption materials: Review and perspective, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 405. doi: 10.1007/s12613-022-2555-8
    [2]
    S.J. Zhang, J.Y. Li, X.T. Jin, and G.L. Wu, Current advances of transition metal dichalcogenides in electromagnetic wave absorption: A brief review, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 428. doi: 10.1007/s12613-022-2546-9
    [3]
    Z.Z. Shen, J.H. Chen, B. Li, G.Q. Li, Z.J. Zhang, and X.M. Hou, Recent progress in SiC nanowires as electromagnetic microwaves absorbing materials, J. Alloys Compd., 815(2020), art. No. 152388. doi: 10.1016/j.jallcom.2019.152388
    [4]
    P. Feng, H.J. Wei, P. Shang, et al., Enhanced electromagnetic microwave absorption of SiC nanowire-reinforced PDC-SiC ceramics catalysed by rare earth, Ceram. Int., 48(2022), No. 17, p. 24915. doi: 10.1016/j.ceramint.2022.05.145
    [5]
    Y.T. Fan, D. Yang, H. Mei, et al., Tuning SiC nanowires interphase to improve the mechanical and electromagnetic wave absorption properties of SiCf/SiCnw/Si3N4 composites, J. Alloys Compd., 896(2022), art. No. 163017. doi: 10.1016/j.jallcom.2021.163017
    [6]
    P. Zhou, J.H. Chen, M. Liu, P. Jiang, B. Li, and X.M. Hou, Microwave absorption properties of SiC@SiO2@Fe3O4 hybrids in the 2–18 GHz range, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 804. doi: 10.1007/s12613-017-1464-8
    [7]
    C.C. Dang, Q. Mu, X.B. Xie, et al., Recent progress in cathode catalyst for nonaqueous lithium oxygen batteries: A review, Adv. Compos. Hybrid Mater., 5(2022), No. 2, p. 606. doi: 10.1007/s42114-022-00500-8
    [8]
    R. Zhang, C.P. Mu, B.C. Wang, et al., Composites of In/C hexagonal nanorods and graphene nanosheets for high-performance electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 485. doi: 10.1007/s12613-022-2520-6
    [9]
    S.P. Wang, Z.Y. Liu, Q.C. Liu, et al., Promoting the microwave absorption performance of hierarchical CF@NiO/Ni composites via phase and morphology evolution, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 494. doi: 10.1007/s12613-022-2524-2
    [10]
    H. Gao, F. Luo, Q.L. Wen, Y.C. Qing, and W.C. Zhou, Effect of preparation conditions on mechanical, dielectric and microwave absorption properties of SiC fiber/mullite matrix composite, Ceram. Int., 45(2019), No. 9, p. 11625. doi: 10.1016/j.ceramint.2019.03.034
    [11]
    Q. Zhou, X.W. Yin, F. Ye, Z.M. Tang, R. Mo, and L.F. Cheng, High temperature electromagnetic wave absorption properties of SiCf/Si3N4 composite induced by different SiC fibers, Ceram. Int., 45(2019), No. 5, p. 6514. doi: 10.1016/j.ceramint.2018.12.142
    [12]
    Z.W. Ren, W.C. Zhou, Y.C. Qing, et al., Effect of different kinds of SiC fibers on microwave absorption and mechanical properties of SiCf/SiC composites, J. Mater. Sci., 32(2021), No. 21, p. 25668.
    [13]
    X.Y. Lv, F. Ye, L.F. Cheng, and L.T. Zhang, 3D printing “wire-on-sphere” hierarchical SiC nanowires/SiC whiskers foam for efficient high-temperature electromagnetic wave absorption, J. Mater. Sci. Technol., 109(2022), p. 94. doi: 10.1016/j.jmst.2021.08.054
    [14]
    K. Su, Y. Wang, K.X. Hu, et al., Ultralight and high-strength SiCnw@SiC foam with highly efficient microwave absorption and heat insulation properties, ACS Appl. Mater. Interfaces, 13(2021), No. 18, p. 22017. doi: 10.1021/acsami.1c03543
    [15]
    T. Han, R.Y. Luo, G.Y. Cui, and L.Y. Wang, Effect of SiC nanowires on the high-temperature microwave absorption properties of SiCf/SiC composites, J. Eur. Ceram. Soc., 39(2019), No. 5, p. 1743. doi: 10.1016/j.jeurceramsoc.2019.01.018
    [16]
    B. Du, C. He, A.Z. Shui, X.H. Zhang, and C.Q. Hong, Microwave-absorption properties of heterostructural SiC nanowires/SiOC ceramic derived from polysiloxane, Ceram. Int., 45(2019), No. 1, p. 1208. doi: 10.1016/j.ceramint.2018.09.306
    [17]
    Y.P. Dong, X.M. Fan, H.J. Wei, et al., Enhanced electromagnetic wave absorption properties of a novel SiC nanowires reinforced SiO2/3Al2O3·2SiO2 porous ceramic, Ceram. Int., 46(2020), No. 14, p. 22474. doi: 10.1016/j.ceramint.2020.06.006
    [18]
    X.L. Lan, Y.B. Li, and Z.J. Wang, High-temperature electromagnetic wave absorption, mechanical and thermal insulation properties of in situ grown SiC on porous SiC skeleton, Chem. Eng. J., 397(2020), art. No. 125250. doi: 10.1016/j.cej.2020.125250
    [19]
    J.J. Qian, A.Z. Shui, C. He, et al., Multifunction properties of SiOC reinforced with carbon fiber and in situ SiC nanowires, Ceram. Int., 47(2021), No. 6, p. 8004. doi: 10.1016/j.ceramint.2020.11.153
    [20]
    X. Li, X.K. Lu, M.H. Li, et al., A SiC nanowires/Ba0.75Sr0.25Al2Si2O8 ceramic heterojunction for stable electromagnetic absorption under variable-temperature, J. Mater. Sci. Technol., 125(2022), p. 29. doi: 10.1016/j.jmst.2022.02.032
    [21]
    L. Xia, X.Y. Zhang, Y.N. Yang, et al., Enhanced electromagnetic wave absorption properties of laminated SiCNW–Cf/lithium–aluminum–silicate (LAS) composites, J. Alloys Compd., 748(2018), p. 154. doi: 10.1016/j.jallcom.2018.03.044
    [22]
    W.B. Li, M.H. Chen, M.Y. Wu, S.L. Zhu, C. Wang, and F.H. Wang, Microstructure and oxidation behavior of a SiC–Al2O3–glass composite coating on Ti–47Al–2Cr–2Nb alloy, Corros. Sci., 87(2014), p. 179. doi: 10.1016/j.corsci.2014.06.015
    [23]
    L. Zhang, S.Q. Yang, M.H. Xiao, et al., Influence of silicon carbide nanowires on the properties of Bi–B–Si–Zn–Al glass based low temperature co-fired ceramics, Ceram. Int., 48(2022), No. 17, p. 25382. doi: 10.1016/j.ceramint.2022.05.212
    [24]
    S.H.N. Doo, W.B. Lim, J.S. Lee, C.S. Han, Y.S. Cho, and C.G. Yoo, Silicon carbide whisker-reinforced ceramic tape for high-power components, Int. J. Appl. Ceram. Technol., 11(2014), No. 2, p. 240. doi: 10.1111/ijac.12127
    [25]
    Y.M. Feng, L. Xia, C.H. Ding, et al., Boosted multi-polarization from silicate-glass@rGO doped with modifier cations for superior microwave absorption, J. Colloid Interface Sci., 593(2021), p. 96. doi: 10.1016/j.jcis.2021.03.007
    [26]
    Y.M. Feng, C.Z. Du, D.X. Meng, et al., Aluminosilicate glass–ceramics/reduced graphene oxide composites doped with lithium ions: The microstructure evolution and tuning for target microwave absorption, Ceram. Int., 48(2022), No. 2, p. 2717. doi: 10.1016/j.ceramint.2021.10.058
    [27]
    J.L. Kuang and W.B. Cao, Oxidation behavior of SiC whiskers at 600–1400°C in air, J. Am. Ceram. Soc., 97(2014), No. 9, p. 2698. doi: 10.1111/jace.13096
    [28]
    Q.G. Fu, H. Peng, X.Y. Nan, H.J. Li, and Y.H. Chu, Effect of SiC nanowires on the thermal shock resistance of joint between carbon/carbon composites and Li2O–Al2O3–SiO2 glass ceramics, J. Eur. Ceram. Soc., 34(2014), No. 10, p. 2535. doi: 10.1016/j.jeurceramsoc.2014.03.011
    [29]
    Q.G. Fu, B.L. Jia, H.J. Li, K.Z. Li, and Y.H. Chu, SiC nanowires reinforced MAS joint of SiC coated carbon/carbon composites to LAS glass ceramics, Mater. Sci. Eng. A, 532(2012), p. 255. doi: 10.1016/j.msea.2011.10.088
    [30]
    J.L. Kuang and W.B. Cao, Silicon carbide whiskers: Preparation and high dielectric permittivity, J. Am. Ceram. Soc., 96(2013), No. 9, p. 2877. doi: 10.1111/jace.12393
    [31]
    L. Long, J.X. Xu, H. Luo, P. Xiao, W. Zhou, and Y. Li, Dielectric response and electromagnetic wave absorption of novel macroporous short carbon fibers/mullite composites, J. Am. Ceram. Soc., 103(2020), p. 6869. doi: 10.1111/jace.17401
    [32]
    J.L. Kuang and W.B. Cao, Stacking faults induced high dielectric permittivity of SiC wires, Appl. Phys. Lett., 103(2013), No. 11, art. No. 112906. doi: 10.1063/1.4821036
    [33]
    Z.H. Zhao, L.M. Zhang, and H.J. Wu, Hydro/organo/ionogels: “Controllable” electromagnetic wave absorbers, Adv. Mater., 34(2022), No. 43, art. No. 2205376. doi: 10.1002/adma.202205376
    [34]
    B. Wen, M.S. Cao, Z.L. Hou, et al., Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites, Carbon, 65(2013), p. 124. doi: 10.1016/j.carbon.2013.07.110
    [35]
    M. Zhang, M.S. Cao, J.C. Shu, W.Q. Cao, L. Li, and J. Yuan, Electromagnetic absorber converting radiation for multifunction, Mater. Sci. Eng. R, 145(2021), art. No. 100627. doi: 10.1016/j.mser.2021.100627
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(560) PDF Downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return