Haiyun Xie, Jialing Chen, Pei Zhang, Likun Gao, Dianwen Liu,  and Luzheng Chen, Separation of galena and chalcopyrite using the difference in their surface acid corrosion characteristics, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2157-2168. https://doi.org/10.1007/s12613-023-2654-1
Cite this article as:
Haiyun Xie, Jialing Chen, Pei Zhang, Likun Gao, Dianwen Liu,  and Luzheng Chen, Separation of galena and chalcopyrite using the difference in their surface acid corrosion characteristics, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2157-2168. https://doi.org/10.1007/s12613-023-2654-1
Research Article

Separation of galena and chalcopyrite using the difference in their surface acid corrosion characteristics

+ Author Affiliations
  • Corresponding authors:

    Haiyun Xie    E-mail: xiehaiyun@kust.edu.cn

    Pei Zhang    E-mail: 2267902456@qq.com

  • Received: 10 January 2023Revised: 31 March 2023Accepted: 17 April 2023Available online: 18 April 2023
  • Galena (PbS) and chalcopyrite (CuFeS2) are sulfide minerals that exhibit good floatability characteristics. Thus, efficiently separating them via common flotation is challenging. Herein, a new method of surface sulfuric acid corrosion in conjunction with flotation separation was proposed, and the efficient separation of galena and chalcopyrite was successfully realized. Contact angle test results showed a substantial decrease in surface contact angle and a selective inhibition of surface floatability for corroded galena. Meanwhile, the contact angle and floatability of corroded chalcopyrite remained almost unaffected. Scanning electron microscope results confirmed that sulfuric acid corrosion led to the formation of a dense oxide layer on the galena surface, whereas the chalcopyrite surface remained unaltered. X-ray photoelectron spectroscopy results showed that the chemical state of S2− on the surface of corroded galena was oxidized to $ \;{\mathrm{S}\mathrm{O}}_{4}^{2-} $. A layer of hydrophilic PbSO4 was formed on the surface, leading to a sharp decrease in galena floatability. Meanwhile, new hydrophobic CuS2, CuS, and Cu1−xFe1−yS2−z species exhibiting good floatability were generated on the chalcopyrite surface. Finally, theoretical analysis results were further verified by corrosion–flotation separation experiments. The galena–chalcopyrite mixture was completely separated via flotation separation under appropriate corrosion acidity, corrosion temperature, and corrosion time. A novel approach has been outlined in this study, providing potential applications in the efficient separation of refractory copper–lead sulfide ore.
  • loading
  • [1]
    W.Q. Qin, Q. Wei, F. Jiao, N. Li, P.P. Wang, and L.F. Ke, Effect of sodium pyrophosphate on the flotation separation of chalcopyrite from galena, Int. J. Min. Sci. Technol., 22(2012), No. 3, p. 345. doi: 10.1016/j.ijmst.2012.04.011
    [2]
    R.Q. Liu, H.Y. Lu, Z.J. Xu, et al., New insights into the reagent-removal mechanism of sodium sulfide in chalcopyrite and galena bulk flotation: A combined experimental and computational study, J. Mater. Res. Technol., 9(2020), No. 3, p. 5352. doi: 10.1016/j.jmrt.2020.03.062
    [3]
    R.A. Hayes and J. Ralston, The collectorless flotation and separation of sulphide minerals by Eh control, Int. J. Miner. Process., 23(1988), No. 1-2, p. 55. doi: 10.1016/0301-7516(88)90005-1
    [4]
    W. Chen, F.F. Chen, Z.H. Zhang, X.Z. Tian, X.Z. Bu, and Q.C. Feng, Investigations on the depressant effect of sodium alginate on galena flotation in different sulfide ore collector systems, Miner. Eng., 160(2021), art. No. 106705. doi: 10.1016/j.mineng.2020.106705
    [5]
    J.S. Yu, R.Q. Liu, L. Wang, W. Sun, H. Peng, and Y.H. Hu, Selective depression mechanism of ferric chromium lignin sulfonate for chalcopyrite–galena flotation separation, Int. J. Miner. Metall. Mater., 25(2018), No. 5, p. 489. doi: 10.1007/s12613-018-1595-6
    [6]
    M.F. Liu, C.Y. Zhang, B. Hu, et al., Enhancing flotation separation of chalcopyrite and galena by the surface synergism between sodium sulfite and sodium lignosulfonate, Appl. Surf. Sci., 507(2020), art. No. 145042. doi: 10.1016/j.apsusc.2019.145042
    [7]
    Z.Y. Zhang, Y.M. Wang, G.Y. Liu, S. Liu, J. Liu, and X.L. Yang, Separation of chalcopyrite from galena with 3-amyl-4-amino-1,2,4-triazole-5-thione collector: Flotation behavior and mechanism, J. Ind. Eng. Chem., 92(2020), p. 210. doi: 10.1016/j.jiec.2020.09.007
    [8]
    R.Z. Liu, W.Q. Qin, F. Jiao, et al., Flotation separation of chalcopyrite from galena by sodium humate and ammonium persulfate, Trans. Nonferrous Met. Soc. China, 26(2016), No. 1, p. 265. doi: 10.1016/S1003-6326(16)64113-4
    [9]
    D. Kocabağ and T. Güler, Two-liquid flotation of sulphides: An electrochemical approach, Miner. Eng., 20(2007), No. 13, p. 1246. doi: 10.1016/j.mineng.2007.05.005
    [10]
    C. Sui, J.A. Finch, J.E. Nesset, J. Kim, and S. Lajoie, Characterisation of the surfaces of galena and sphalerite in the presence of dithionite, Dev. Miner. Process., 13(2000), pp. C8b-15.
    [11]
    R. Houot and D. Duhamet, The use of sodium sulphite to improve the flotation selectivity between chalcopyrite and galena in a complex sulphide ore, Miner. Eng., 5(1992), No. 3-5, p. 343. doi: 10.1016/0892-6875(92)90216-V
    [12]
    X.M. Qiu, H.Y. Yang, G.B. Chen, S.P. Zhong, C.K. Cai, and B.B. Lan, Inhibited mechanism of carboxymethyl cellulose as a galena depressant in chalcopyrite and galena separation flotation, Miner. Eng., 150(2020), art. No. 106273. doi: 10.1016/j.mineng.2020.106273
    [13]
    D.W. Wang, F. Jiao, W.Q. Qin, and X.J. Wang, Effect of surface oxidation on the flotation separation of chalcopyrite and galena using sodium humate as depressant, Sep. Sci. Technol., 53(2018), No. 6, p. 961. doi: 10.1080/01496395.2017.1405042
    [14]
    Z.J. Piao, D.Z. Wei, and Z.L. Liu, Influence of sodium 2,3-dihydroxypropyl dithiocarbonate on floatability of chalcopyrite and galena, Trans. Nonferrous Met. Soc. China, 24(2014), No. 10, p. 3343. doi: 10.1016/S1003-6326(14)63475-0
    [15]
    S. Bulatovic, D.M. Wysouzil, and F.C. Bermejo, Development and introduction of a new copper/lead separation method in the raura plant (Peru), Miner. Eng., 14(2001), No. 11, p. 1483. doi: 10.1016/S0892-6875(01)00161-3
    [16]
    Q. Liu and J.S. Laskowski, The role of metal hydroxides at mineral surfaces in dextrin adsorption, II. Chalcopyrite-galena separations in the presence of dextrin, Int. J. Miner. Process., 27(1989), No. 1-2, p. 147. doi: 10.1016/0301-7516(89)90012-4
    [17]
    J.V. Ferrari, B.M. de Oliveira Silveira, J.J. Arismendi-Florez, et al., Influence of carbonate reservoir mineral heterogeneities on contact angle measurements, J. Pet. Sci. Eng., 199(2021), art. No. 108313. doi: 10.1016/j.petrol.2020.108313
    [18]
    Y.F. Fu, W.Z. Yin, X.S. Dong, et al., New insights into the flotation responses of brucite and serpentine for different conditioning times: Surface dissolution behavior, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1898. doi: 10.1007/s12613-020-2158-1
    [19]
    M. Vuckovac, M. Latikka, K. Liu, T. Huhtamäki, and R.H.A. Ras, Uncertainties in contact angle goniometry, Soft Matter, 15(2019), No. 35, p. 7089. doi: 10.1039/C9SM01221D
    [20]
    Z. Zhang, Y. Zhang, Y.L. Guo, X.M. Chen, and L. Chen, Impurity element analysis of aluminum hydride using PIXE, XPS and elemental analyzer technique, Nucl. Instrum. Methods Phys. Res. Sect. B, 488(2021), p. 1. doi: 10.1016/j.nimb.2020.11.018
    [21]
    W. Chen, Q.M. Feng, G.F. Zhang, and Q. Yang, Investigations on flotation separation of scheelite from calcite by using a novel depressant: Sodium phytate, Miner. Eng., 126(2018), p. 116. doi: 10.1016/j.mineng.2018.06.008
    [22]
    Q. Zhang, S.M. Wen, Q.C. Feng, and S. Zhang, Surface characterization of azurite modified with sodium sulfide and its response to flotation mechanism, Sep. Purif. Technol., 242(2020), art. No. 116760. doi: 10.1016/j.seppur.2020.116760
    [23]
    C. Greet and R.S.C. Smart, Diagnostic leaching of galena and its oxidation products with EDTA, Miner. Eng., 15(2002), No. 7, p. 515. doi: 10.1016/S0892-6875(02)00075-4
    [24]
    Y.L. Mikhlin, A.A. Karacharov, and M.N. Likhatski, Effect of adsorption of butyl xanthate on galena, PbS, and HOPG surfaces as studied by atomic force microscopy and spectroscopy and XPS, Int. J. Miner. Process., 144(2015), p. 81. doi: 10.1016/j.minpro.2015.10.004
    [25]
    B. McFadzean, D.G. Castelyn, and C.T. O’Connor, The effect of mixed thiol collectors on the flotation of galena, Miner. Eng., 36-38(2012), p. 211. doi: 10.1016/j.mineng.2012.03.027
    [26]
    L. Yu, Q.J. Liu, S.M. Li, J.S. Deng, B. Luo, and H. Lai, Depression mechanism involving Fe3+ during arsenopyrite flotation, Sep. Purif. Technol., 222(2019), p. 109. doi: 10.1016/j.seppur.2019.04.007
    [27]
    P. Nowak and K. Laajalehto, Oxidation of galena surface – An XPS study of the formation of sulfoxy species, Appl. Surf. Sci., 157(2000), No. 3, p. 101. doi: 10.1016/S0169-4332(99)00575-9
    [28]
    M. Kartal, F. Xia, D. Ralph, W.D.A. Rickard, F. Renard, and W. Li, Enhancing chalcopyrite leaching by tetrachloroethylene-assisted removal of sulphur passivation and the mechanism of jarosite formation, Hydrometallurgy, 191(2020), art. No. 105192. doi: 10.1016/j.hydromet.2019.105192
    [29]
    F.K. Mohammadabad, S. Hejazi, J.V. Khaki, and A. Babakhani, Mechanochemical leaching of chalcopyrite concentrate by sulfuric acid, Int. J. Miner. Metall. Mater., 23(2016), No. 4, p. 380. doi: 10.1007/s12613-016-1247-7
    [30]
    A. Ghahremaninezhad, D.G. Dixon, and E. Asselin, Electrochemical and XPS analysis of chalcopyrite (CuFeS2) dissolution in sulfuric acid solution, Electrochim. Acta, 87(2013), p. 97. doi: 10.1016/j.electacta.2012.07.119
    [31]
    M. Sokić, B. Marković, and S. Stanković, Kinetics of chalcopyrite leaching by hydrogen peroxide in sulfuric acid, Metals, 9(2019), No. 11, art. No. 1173. doi: 10.3390/met9111173
    [32]
    J.A. Mielczarski, J.M. Cases, M. Alnot, and J.J. Ehrhardt, XPS characterization of chalcopyrite, tetrahedrite, and tennantite surface products after different conditioning. 1. aqueous solution at pH 10, Langmuir, 12(1996), No. 10, p. 2519. doi: 10.1021/la9505881
    [33]
    C. Klauber, A. Parker, W. van Bronswijk, and H. Watling, Sulphur speciation of leached chalcopyrite surfaces as determined by X-ray photoelectron spectroscopy, Int. J. Miner. Process., 62(2001), No. 1-4, p. 65. doi: 10.1016/S0301-7516(00)00045-4
    [34]
    J.N. Zhao, Electrochemical Study of Oxidative Passivation Process of Chalcopyrite Under Acidic Conditions [Dissertation], South China University of Technology, Guangzhou, 2013, p. 35.
    [35]
    S.R. Zhao, A Study on the Mechanical Activation Leaching of the Chalcopyrite and the Activation Mechanism [Dissertation], Northeastern University, Shenyang, 2016, p. 30.
    [36]
    T.G. Thai, The Oxidation and Passivation of Chalcopyrite [Dissertation], South China University of Technology, Guangzhou, 2015, p. 42.
    [37]
    Y.F. Zheng, X.M. Hua, Q. Xu, X.G. Lu, H.W. Cheng, and X.L. Zou, Leaching and electrochemical oxidation mechanism of chalcopyrite in sulfuric acid solution, Shanghai Metals, 41(2019), No. 3, p. 81.
    [38]
    C. Klauber, Fracture-induced reconstruction of a chalcopyrite (CuFeS2) surface, Surf. Interface Anal., 35(2003), No. 5, p. 415. doi: 10.1002/sia.1539
    [39]
    S.L. Harmer, J.E. Thomas, D. Fornasiero, and A.R. Gerson, The evolution of surface layers formed during chalcopyrite leaching, Geochim. Cosmochim. Acta, 70(2006), No. 17, p. 4392. doi: 10.1016/j.gca.2006.06.1555
    [40]
    H.Y. Xie, Y.H. Liu, B. Rao, et al., Selective passivation behavior of galena surface by sulfuric acid and a novel flotation separation method for copper-lead sulfide ore without collector and inhibitor, Sep. Purif. Technol., 267(2021), art. No. 118621. doi: 10.1016/j.seppur.2021.118621
    [41]
    H.Y. Xie, L.K. Gao, H.X. Dai, et al., A Mixed Concentrate Flotation Separation Method Based on Enhanced Suppression of Lead Sulfide, Chinese Patent, Appl. 10936140.8, 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(1213) PDF Downloads(42) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return