Hongbo Ju, Moussa Athmani, Jing Luan, Abbas AL-Rjoub, Albano Cavaleiro, Talha Bin Yaqub, Abdelouahad Chala, Fabio Ferreira, and Filipe Fernandes, Insights into the oxidation resistance mechanism and tribological behaviors of multilayered TiSiN/CrVxN hard coatings, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2459-2468. https://doi.org/10.1007/s12613-023-2655-0
Cite this article as:
Hongbo Ju, Moussa Athmani, Jing Luan, Abbas AL-Rjoub, Albano Cavaleiro, Talha Bin Yaqub, Abdelouahad Chala, Fabio Ferreira, and Filipe Fernandes, Insights into the oxidation resistance mechanism and tribological behaviors of multilayered TiSiN/CrVxN hard coatings, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2459-2468. https://doi.org/10.1007/s12613-023-2655-0
Research ArticleOpen Access

Insights into the oxidation resistance mechanism and tribological behaviors of multilayered TiSiN/CrVxN hard coatings

+ Author Affiliations
  • Corresponding authors:

    Hongbo Ju    E-mail: hju@uc.pt

    Filipe Fernandes    E-mail: fid@isep.ipp.pt

  • Received: 23 February 2023Revised: 24 March 2023Accepted: 17 April 2023Available online: 1 December 2023
  • In the last decades, vanadium alloyed coatings have been introduced as potential candidates for self-lubrication due to their perfect tribological properties. In this work, the influence of V incorporation on the wear performance and oxidation resistance of TiSiN/CrN film coatings deposited by direct current (DC) reactive magnetron sputtering is investigated. The results show that vanadium incorporation significantly decreases the oxidation resistance of the coatings. In general, two layers are formed during the oxidation process: i) Ti(V)O2 on top, followed by a protective layer, which is subdivided into two layers, Cr2O3 and Si–O. ii) The diffusion of V controls the oxidation of V-containing coatings. The addition of vanadium improves the wear resistance of coatings, and the wear rate decreases with increasing V content in the coatings; however, the friction coefficient is independent of the chemical composition of the coatings. The wear of the V-containing coatings is driven by polishing wear.
  • loading
  • Supplementary Information-10.1007s12613-023-2655-0.docx
  • [1]
    H.B. Ju, R. Zhou, J. Luan, et al., Tribological performance under different environments of Ti–C–N composite films for marine wear-resistant parts, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 144. doi: 10.1007/s12613-022-2551-z
    [2]
    V.Kh. Alimov and J. Roth, Deuterium retention in chemically vapor deposited tungsten carbide coatings and hot-rolled tungsten exposed to low-energy deuterium plasma, Tungsten, 4(2022), No. 1, p. 10. doi: 10.1007/s42864-021-00120-7
    [3]
    C. Wang, B.L. Ji, S.X. Gu, et al., Recent research progress on the compatibility of tritium breeders with structural materials and coatings in fusion reactors, Tungsten, 4(2022), No. 3, p. 170. doi: 10.1007/s42864-022-00160-7
    [4]
    H.B. Ju, D. Yu, J.H. Xu, et al., Crystal structure and tribological properties of ZrAlMoN composite films deposited by magnetron sputtering, Mater. Chem. Phys., 230(2019), p. 347. doi: 10.1016/j.matchemphys.2019.03.071
    [5]
    H.B. Ju, D. Yu, L.H. Yu, et al., The influence of Ag contents on the microstructure, mechanical and tribological properties of ZrN–Ag films, Vacuum, 148(2018), p. 54. doi: 10.1016/j.vacuum.2017.10.029
    [6]
    H.B. Ju, D.A. Yu, J.H. Xu, et al., Microstructure, mechanical, and tribological properties of niobium vanadium carbon nitride films, J. Vac. Sci. Technol. A, 36(2018), No. 3, art. No. 031511. doi: 10.1116/1.5020954
    [7]
    H.B. Ju, N. Ding, J.H. Xu, et al., Improvement of tribological properties of niobium nitride films via copper addition, Vacuum, 158(2018), p. 1. doi: 10.1016/j.vacuum.2018.09.037
    [8]
    Y.C. Chim, X.Z. Ding, X.T. Zeng, and S. Zhang, Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc, Thin Solid Films, 517(2009), No. 17, p. 4845. doi: 10.1016/j.tsf.2009.03.038
    [9]
    Y.X. Xu, L. Chen, Z.Q. Liu, F. Pei, and Y. Du, Improving thermal stability of TiSiN nanocomposite coatings by multilayered epitaxial growth, Surf. Coat. Technol., 321(2017), p. 180. doi: 10.1016/j.surfcoat.2017.04.057
    [10]
    W.H. Zhang and J.H. Hsieh, Tribological behavior of TiN and CrN coatings sliding against an epoxy molding compound, Surf. Coat. Technol., 130(2000), No. 2-3, p. 240. doi: 10.1016/S0257-8972(00)00709-X
    [11]
    I. Milošev, H.H. Strehblow, and B. Navinšek, XPS in the study of high-temperature oxidation of CrN and TiN hard coatings, Surf. Coat. Technol., 74-75(1995), p. 897. doi: 10.1016/0257-8972(95)08360-X
    [12]
    M.A. Djouadi, C. Nouveau, O. Banakh, R. Sanjinés, F. Lévy, and G. Nouet, Stress profiles and thermal stability of CrxNy films deposited by magnetron sputtering, Surf. Coat. Technol., 151-152(2002), p. 510. doi: 10.1016/S0257-8972(01)01635-8
    [13]
    C.K. Liu, H.B. Ju, P.X. Han, et al., The influence of carbon content on the microstructure, mechanical and frictional property of chromium carbon nitride composite films, Vacuum, 178(2020), art. No. 109368. doi: 10.1016/j.vacuum.2020.109368
    [14]
    L.Q. He, L. Chen, Y.X. Xu, and Y. Du, Thermal stability and oxidation resistance of Cr1–xAlxN coatings with single phase cubic structure, J. Vac. Sci. Technol. A, 33(2015), No. 6, art. No. 061513. doi: 10.1116/1.4930424
    [15]
    D.B. Lee, Y.C. Lee, and S.C. Kwon, High temperature oxidation of a CrN coating deposited on a steel substrate by ion plating, Surf. Coat. Technol., 141(2001), No. 2-3, p. 227. doi: 10.1016/S0257-8972(01)01238-5
    [16]
    F.H. Lu, H.Y. Chen, and C.H. Hung, Degradation of CrN films at high temperature under controlled atmosphere, J. Vac. Sci. Technol. A, 21(2003), No. 3, p. 671. doi: 10.1116/1.1566784
    [17]
    A.E. Reiter, C. Mitterer, and B. Sartory, Oxidation of arc-evaporated Al1–xCrxN coatings, J. Vac. Sci. Technol. A, 25(2007), No. 4, p. 711. doi: 10.1116/1.2738492
    [18]
    Z.B. Qi, B. Liu, Z.T. Wu, F.P. Zhu, Z.C. Wang, and C.H. Wu, A comparative study of the oxidation behavior of Cr2N and CrN coatings, Thin Solid Films, 544(2013), p. 515. doi: 10.1016/j.tsf.2013.01.031
    [19]
    H.B. Ju, R. Wang, N. Ding, et al., Improvement on the oxidation resistance and tribological properties of molybdenum disulfide film by doping nitrogen, Mater. Des., 186(2020), art. No. 108300. doi: 10.1016/j.matdes.2019.108300
    [20]
    H.B. Ju, R. Zhou, J. Luan, et al., Multilayer Mo2N-Ag/SiNx films for demanding applications: Morphology, structure and temperature-cycling tribological properties, Mater. Des., 223(2022), art. No. 111128. doi: 10.1016/j.matdes.2022.111128
    [21]
    C.K. Liu, H.B. Ju, J.H. Xu, et al., Influence of copper on the compositions, microstructure and room and elevated temperature tribological properties of the molybdenum nitride film, Surf. Coat. Technol., 395(2020), art. No. 125811. doi: 10.1016/j.surfcoat.2020.125811
    [22]
    H.B. Ju, R. Zhou, S.J. Liu, L.H. Yu, J.H. Xu, and Y.X. Geng, Enhancement of the tribological behavior of self-lubricating nanocomposite Mo2N/Cu films by adding the amorphous SiNx, Surf. Coat. Technol., 423(2021), art. No. 127565. doi: 10.1016/j.surfcoat.2021.127565
    [23]
    H.B. Ju, R. Wang, W.X. Wang, J.H. Xu, L.H. Yu, and H. Luo, The microstructure and tribological properties of molybdenum and silicon nitride composite films, Surf. Coat. Technol., 401(2020), art. No. 126238. doi: 10.1016/j.surfcoat.2020.126238
    [24]
    Y.W. Lin, J.H. Huang, W.J. Cheng, and G.P. Yu, Effect of Ti interlayer on mechanical properties of TiZrN coatings on D2 steel, Surf. Coat. Technol., 350(2018), p. 745. doi: 10.1016/j.surfcoat.2018.04.077
    [25]
    A. AL-Rjoub, L. Rebouta, N.F. Cunha, F. Fernandes, N.P. Barradas, and E. Alves, W/AlSiTiNx/SiAlTiOyNx/SiAlOx multilayered solar thermal selective absorber coating, Sol. Energy, 207(2020), p. 192. doi: 10.1016/j.solener.2020.06.094
    [26]
    F. Vaz, L. Rebouta, P. Goudeau, et al., Characterisation of Ti1−xSixNy nanocomposite films, Surf. Coat. Technol., 133-134(2000), p. 307. doi: 10.1016/S0257-8972(00)00947-6
    [27]
    H.B. Ju, L.Y. Xu, J. Luan, et al., Enhancement on the hardness and oxidation resistance property of TiN/Ag composite films for high temperature applications by addition of Si, Vacuum, 209(2023), art. No. 111752. doi: 10.1016/j.vacuum.2022.111752
    [28]
    M. Diserens, J. Patscheider, and F. Lévy, Mechanical properties and oxidation resistance of nanocomposite TiN–SiNx physical-vapor-deposited thin films, Surf. Coat. Technol., 120-121(1999), p. 158. doi: 10.1016/S0257-8972(99)00481-8
    [29]
    J.B. Choi, K. Cho, M.H. Lee, and K.H. Kim, Effects of Si content and free Si on oxidation behavior of Ti–Si–N coating layers, Thin Solid Films, 447-448(2004), p. 365. doi: 10.1016/S0040-6090(03)01083-6
    [30]
    L.C. Chang, M.C. Sung, Y.I. Chen, and C.H. Tseng, Mechanical properties and oxidation behavior of CrWSiN films, Surf. Coat. Technol., 437(2022), art. No. 128368. doi: 10.1016/j.surfcoat.2022.128368
    [31]
    L. Aissani, M. Fellah, and C. Nouveau, Structural mechanical and tribological behavior of reactive sputtered Cr–N and Cr–V–N films, Diffusion Found., 18(2018), p. 27. doi: 10.4028/www.scientific.net/DF.18.27
    [32]
    B.B. Xu, P. Guo, Z.Y. Wang, et al., Anti-wear Cr–V–N coating via V solid solution: Microstructure, mechanical and tribological properties, Surf. Coat. Technol., 397(2020), art. No. 126048. doi: 10.1016/j.surfcoat.2020.126048
    [33]
    Y.X. Qiu, S. Zhang, B. Li, et al., Improvement of tribological performance of CrN coating via multilayering with VN, Surf. Coat. Technol., 231(2013), p. 357. doi: 10.1016/j.surfcoat.2012.03.010
    [34]
    F.X. Fu, S.W. Han, and Z. Chen, Influence of cathode current on corrosion resistance and tribological properties of TiAlN/TiVN hard coatings, Ferroelectrics, 549(2019), No. 1, p. 227. doi: 10.1080/00150193.2019.1592565
    [35]
    F. Fernandes, A. Loureiro, T. Polcar, and A. Cavaleiro, The effect of increasing V content on the structure, mechanical properties and oxidation resistance of Ti–Si–V–N films deposited by DC reactive magnetron sputtering, Appl. Surf. Sci., 289(2014), p. 114. doi: 10.1016/j.apsusc.2013.10.117
    [36]
    D.B. Lewis, S. Creasey, Z. Zhou, et al., The effect of (Ti+Al): V ratio on the structure and oxidation behaviour of TiAlN/VN nano-scale multilayer coatings, Surf. Coat. Technol., 177-178(2004), p. 252. doi: 10.1016/j.surfcoat.2003.09.041
    [37]
    A. Al-Rjoub, A. Cavaleiro, and F. Fernandes, Structure, morphology, thermal stability and oxidation resistance of multilayered TiSiN/VN films: Influence of TiSiN-layer thickness, J. Mater. Eng. Perform., 30(2021), No. 6, p. 3934. doi: 10.1007/s11665-021-05560-3
    [38]
    M. Athmani, A. AL-Rjoub, D. Cavaleiro, A. Chala, A. Cavaleiro, and F. Fernandes, Microstructural, mechanical, thermal stability and oxidation behavior of TiSiN/CrVxN multilayer coatings deposited by D.C. reactive magnetron sputtering, Surf. Coat. Technol., 405(2021), art. No. 126593. doi: 10.1016/j.surfcoat.2020.126593
    [39]
    H.B. Ju, N. Ding, J.H. Xu, et al., The influence of crystal structure and the enhancement of mechanical and frictional properties of titanium nitride film by addition of ruthenium, Appl. Surf. Sci., 489(2019), p. 247. doi: 10.1016/j.apsusc.2019.05.251
    [40]
    T. Kacsich, S. Gasser, Y. Tsuji, A. Dommann, and M.A. Nicolet, Wet oxidation of Ti34Si23N43, J. Appl. Phys., 85(1999), No. 3, p. 1871. doi: 10.1063/1.369342
    [41]
    T. Kacsich and M.A. Nicolet, Moving species in Ti34Si23N43 oxidation, Thin Solid Films, 349(1999), No. 1-2, p. 1. doi: 10.1016/S0040-6090(99)00178-9
    [42]
    M. Danek, F. Fernandes, A. Cavaleiro, and T. Polcar, Influence of Cr additions on the structure and oxidation resistance of multilayered TiAlCrN films, Surf. Coat. Technol., 313(2017), p. 158. doi: 10.1016/j.surfcoat.2017.01.053
    [43]
    T. Takahashi, Y. Minamino, H. Hirasawa, and T. Ouchi, High-temperature oxidation and its kinetics study of Ti–Al and Ti–V alloys in air, Mater. Trans., 55(2014), No. 2, p. 290. doi: 10.2320/matertrans.L-M2013840
    [44]
    R. Zhou, H.B. Ju, S.J. Liu, et al., The influences of Ag content on the friction and wear properties of TiCN–Ag films, Vacuum, 196(2022), art. No. 110719. doi: 10.1016/j.vacuum.2021.110719
    [45]
    S. Yang, Y. Chang, D. Lin, D. Wang, and W. Wu, Mechanical and tribological properties of multilayered TiSiN/CrN coatings synthesized by a cathodic arc deposition process, Surf. Coat. Technol., 202(2008), p. 2176. doi: 10.1016/j.surfcoat.2007.09.004
    [46]
    P.H. Mayrhofer, P.E. Hovsepian, C. Mitterer, and W.D. Münz, Calorimetric evidence for frictional self-adaptation of TiAlN/VN superlattice coatings, Surf. Coat. Technol., 177-178(2004), p. 341. doi: 10.1016/j.surfcoat.2003.09.024
    [47]
    Y.X. Qiu, B. Li, J.W. Lee, and D.L. Zhao, Self-lubricating CrVN coating strengthened via multilayering with VN, J. Iron Steel Res. Int., 21(2014), No. 5, p. 545. doi: 10.1016/S1006-706X(14)60085-6
    [48]
    L. Rapoport, A. Moshkovich, V. Perfilyev, et al., High temperature friction behavior of CrVxN coatings, Surf. Coat. Technol., 238(2014), p. 207. doi: 10.1016/j.surfcoat.2013.10.076
    [49]
    L. Aissani, M. Fellah, L. Radjehi, C. Nouveau, A. Montagne, and A. Alhussein, Effect of annealing treatment on the microstructure, mechanical and tribological properties of chromium carbonitride coatings, Surf. Coat. Technol., 359(2019), p. 403. doi: 10.1016/j.surfcoat.2018.12.099
    [50]
    H.B. Ju, N. Ding, J.H. Xu, L.H. Yu, Y.X. Geng, and F. Ahmed, The tribological behavior of niobium nitride and silver composite films at elevated testing temperatures, Mater. Chem. Phys., 237(2019), art. No. 121840. doi: 10.1016/j.matchemphys.2019.121840
    [51]
    H.B. Ju, K.H. Huang, J. Luan, Y.X. Geng, J.F. Yang, and J.H. Xu. Evaluation under temperature cycling of the tribological properties of the Ag-SiNx films for green tribological applications, Ceram. Int., 49(2023), No. 18, p. 30115. doi: 10.1016/j.ceramint.2023.06.267
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(640) PDF Downloads(49) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return