Cite this article as: |
Shuo Yang, Jiangyu Wu, Hongwen Jing, Xinguo Zhang, Weiqiang Chen, Yiming Wang, Qian Yin, and Dan Ma, Molecular mechanism of fly ash affecting the performance of cemented backfill material, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1560-1572. https://doi.org/10.1007/s12613-023-2658-x |
Jiangyu Wu E-mail: wujiangyu@cumt.edu.cn
Xinguo Zhang E-mail: zhangxg1229@163.com
Supplementary Information-s12613-023-2658-x.docx |
[1] |
A.X. Wu, Y. Wang, H.J. Wang, S.H. Yin, and X.X. Miao, Coupled effects of cement type and water quality on the properties of cemented paste backfill, Int. J. Miner. Process., 143(2015), p. 65. doi: 10.1016/j.minpro.2015.09.004
|
[2] |
L. Liu, J. Xin, C. Huan, Y.J. Zhao, et al., Effect of curing time on the mesoscopic parameters of cemented paste backfill simulated using the particle flow code technique, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 590. doi: 10.1007/s12613-020-2007-2
|
[3] |
A.A. Wang, S. Cao, and E. Yilmaz, Effect of height to diameter ratio on dynamic characteristics of cemented tailings backfills with fiber reinforcement through impact loading, Constr. Build. Mater., 322(2022), art. No. 126448. doi: 10.1016/j.conbuildmat.2022.126448
|
[4] |
H.Z. Jiao, W.L. Chen, A.X. Wu, et al., Flocculated unclassified tailings settling efficiency improvement by particle collision optimization in the feedwell, Int. J. Miner. Metall. Mater., 29(2022), No. 12, p. 2126. doi: 10.1007/s12613-021-2402-3
|
[5] |
H.Z. Jiao, W.B. Yang, Z.E. Ruan, J.X. Yu, J.H. Liu, and Y.X. Yang, Microscale mechanism of tailing thickening in metal mines, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1538. doi: 10.1007/s12613-022-2587-0
|
[6] |
B.X. Yan, H.W. Jia, E. Yilmaz, X.P. Lai, P.F. Shan, and C. Hou, Numerical study on microscale and macroscale strength behaviors of hardening cemented paste backfill, Constr. Build. Mater., 321(2022), art. No. 126327. doi: 10.1016/j.conbuildmat.2022.126327
|
[7] |
A. Gladwin Alex, A. Kedir, and T. Gebrehiwet Tewele, Review on effects of graphene oxide on mechanical and microstructure of cement-based materials, Constr. Build. Mater., 360(2022), art. No. 129609. doi: 10.1016/j.conbuildmat.2022.129609
|
[8] |
J.Y. Wu, H.W. Jing, Y. Gao, Q.B. Meng, Q. Yin, and Y. Du, Effects of carbon nanotube dosage and aggregate size distribution on mechanical property and microstructure of cemented rockfill, Cem. Concr. Compos., 127(2022), art. No. 104408. doi: 10.1016/j.cemconcomp.2022.104408
|
[9] |
J.Z. Chen, Y. Zhang, D.S. Hou, J. Yu, T.J. Zhao, and B. Yin, Experiment and molecular dynamics study on the mechanism for hydrophobic impregnation in cement-based materials: A case of octadecane carboxylic acid, Constr. Build. Mater., 229(2019), art. No. 116871. doi: 10.1016/j.conbuildmat.2019.116871
|
[10] |
S. Cao, E. Yilmaz, Z.Y. Yin, G.L. Xue, W.D. Song, and L.J. Sun, CT scanning of internal crack mechanism and strength behavior of cement-fiber-tailings matrix composites, Cem. Concr. Compos., 116(2021), art. No. 103865. doi: 10.1016/j.cemconcomp.2020.103865
|
[11] |
J.Y. Wu, H.S. Wong, Q. Yin, and D. Ma, Effects of aggregate strength and mass fraction on mesoscopic fracture characteristics of cemented rockfill from gangue as recycled aggregate, Compos. Struct., 311(2023), art. No. 116851. doi: 10.1016/j.compstruct.2023.116851
|
[12] |
C.L. Hu and Z.J. Li, Property investigation of individual phases in cementitious composites containing silica fume and fly ash, Cem. Concr. Compos., 57(2015), p. 17. doi: 10.1016/j.cemconcomp.2014.11.011
|
[13] |
T. Hemalatha and S. Sasmal, Early-age strength development in fly ash blended cement composites: Investigation through chemical activation, Mag. Concr. Res., 71(2019), No. 5, p. 260. doi: 10.1680/jmacr.17.00336
|
[14] |
D.K. Nayak, P.P. Abhilash, R. Singh, R. Kumar, and V. Kumar, Fly ash for sustainable construction: A review of fly ash concrete and its beneficial use case studies, Cleaner Mater., 6(2022), art. No. 100143. doi: 10.1016/j.clema.2022.100143
|
[15] |
S.A. Rodger and G.W. Groves, Electron microscopy study of ordinary Portland cement and ordinary Portland cement-pulverized fuel ash blended pastes, J. Am. Ceram. Soc., 72(1989), No. 6, p. 1037. doi: 10.1111/j.1151-2916.1989.tb06265.x
|
[16] |
M.C.G. Juenger and R. Siddique, Recent advances in understanding the role of supplementary cementitious materials in concrete, Cem. Concr. Res., 78(2015), p. 71. doi: 10.1016/j.cemconres.2015.03.018
|
[17] |
J. Skibsted and R. Snellings, Reactivity of supplementary cementitious materials (SCMs) in cement blends, Cem. Concr. Res., 124(2019), art. No. 105799. doi: 10.1016/j.cemconres.2019.105799
|
[18] |
E. Sakai, S. Miyahara, S. Ohsawa, S.H. Lee, and M. Daimon, Hydration of fly ash cement, Cem. Concr. Res., 35(2005), No. 6, p. 1135. doi: 10.1016/j.cemconres.2004.09.008
|
[19] |
Q. Ji, R.J.M. Pellenq, and K.J. van Vliet, Comparison of computational water models for simulation of calcium-silicate-hydrate, Comput. Mater. Sci., 53(2012), No. 1, p. 234. doi: 10.1016/j.commatsci.2011.08.024
|
[20] |
C.C. Qi, H. Manzano, D. Spagnoli, Q.S. Chen, and A. Fourie, Initial hydration process of calcium silicates in Portland cement: A comprehensive comparison from molecular dynamics simulations, Cem. Concr. Res., 149(2021), art. No. 106576. doi: 10.1016/j.cemconres.2021.106576
|
[21] |
M. Shishehbor, D. Sakaniwa, D. Stefaniuk, K.J. Krakowiak, and M.J. Abdolhosseini Qomi, On the significance of interfacial chemistry on the strength of fly ash-cement composites, Cem. Concr. Res., 151(2022), art. No. 106619. doi: 10.1016/j.cemconres.2021.106619
|
[22] |
H.J.C. Berendsen, J.R. Grigera, and T.P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem., 91(1987), No. 24, p. 6269. doi: 10.1021/j100308a038
|
[23] |
R.T. Cygan, J.J. Liang, and A.G. Kalinichev, Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field, J. Phys. Chem. B, 108(2004), No. 4, p. 1255. doi: 10.1021/jp0363287
|
[24] |
R.J.M. Pellenq, A. Kushima, R. Shahsavari, et al., A realistic molecular model of cement hydrates, Proc. Natl. Acad. Sci. U. S. A., 106(2009), No. 38, p. 16102. doi: 10.1073/pnas.0902180106
|
[25] |
S.W. Tang, H.B. A, J.T. Chen, et al., The interactions between water molecules and C–S–H surfaces in loads-induced nanopores: A molecular dynamics study, Appl. Surf. Sci., 496(2019), art. No. 143744. doi: 10.1016/j.apsusc.2019.143744
|
[26] |
P. Ganster, M. Benoit, W. Kob, and J.M. Delaye, Structural properties of a calcium aluminosilicate glass from molecular-dynamics simulations: A finite size effects study, J. Chem. Phys., 120(2004), No. 21, p. 10172. doi: 10.1063/1.1724815
|
[27] |
Y.Q. Wu, J.L. You, and G.C. Jiang, Molecular dynamics study of the structure of calcium aluminate melts, J. Inorg. Mater., 18(2003), No. 3, p. 619.
|
[28] |
A. Pedone, Properties calculations of silica-based glasses by atomistic simulations techniques: A review, J. Phys. Chem. C, 113(2009), No. 49, p. 20773. doi: 10.1021/jp9071263
|
[29] |
R.A. Buckingham. The classical equation of state of gaseous helium, neon and argon, Proc. R. Soc. A, 168(1938), No. 933, p. 264.
|
[30] |
Z.J. Wang, Z.H. Li, M. Zhong, Z.S. Li, and C. Wang, Elucidating the effect of Al2O3/SiO2 mass ratio upon SiO2–MnO–CaF2–Al2O3-based welding fluxes: Structural analysis and thermodynamic evaluation, J. Non Cryst. Solids, 601(2023), art. No. 122071. doi: 10.1016/j.jnoncrysol.2022.122071
|
[31] |
J.M.D. Lane, Cooling rate and stress relaxation in silica melts and glasses via microsecond molecular dynamics, Phys. Rev. E, 92(2015), No. 1, art. No. 012320. doi: 10.1103/PhysRevE.92.012320
|
[32] |
D.J. Adams, Grand canonical ensemble Monte Carlo for a Lennard-Jones fluid, Mol. Phys., 29(1975), No. 1, p. 307. doi: 10.1080/00268977500100221
|
[33] |
J.D. Gale, GULP: A computer program for the symmetry-adapted simulation of solids, J. Chem. Soc., Faraday Trans., 93(1997), No. 4, p. 629. doi: 10.1039/a606455h
|
[34] |
A. Nonat, The structure and stoichiometry of C–S–H, Cem. Concr. Res., 34(2004), No. 9, p. 1521. doi: 10.1016/j.cemconres.2004.04.035
|
[35] |
P.A. Sigala, E.A. Ruben, C.W. Liu, et al., Determination of hydrogen bond structure in water versus aprotic environments to test the relationship between length and stability, J. Am. Chem. Soc., 137(2015), No. 17, p. 5730. doi: 10.1021/ja512980h
|
[36] |
F. Shimizu, S. Ogata, and J. Li, Theory of shear banding in metallic glasses and molecular dynamics calculations, Mater. Trans., 48(2007), No. 11, p. 2923. doi: 10.2320/matertrans.MJ200769
|
[37] |
A.L. Thorneywork, R. Roth, D.G.A.L. Aarts, and R.P.A. Dullens, Communication: Radial distribution functions in a two-dimensional binary colloidal hard sphere system, J. Chem. Phys., 140(2014), No. 16, art. No. 161106. doi: 10.1063/1.4872365
|
[38] |
M.P. Pomiès, N. Lequeux, and P. Boch, Speciation of cadmium in cement: Part I. Cd2+ uptake by C–S–H, Cem. Concr. Res., 31(2001), No. 4, p. 563. doi: 10.1016/S0008-8846(00)00480-4
|
[39] |
Q. Luo and J.L. Huang, Mechanisms and critical technologies of transport inhibitor agent (TIA) throughout C–S–H nano-channels, Materials, 15(2022), No. 2, art. No. 515. doi: 10.3390/ma15020515
|
[40] |
B.A. Steele, N. Goldman, I.F. Kuo, and M.P. Kroonblawd, Mechanochemical synthesis of glycine oligomers in a virtual rotational diamond anvil cell, Chem. Sci., 11(2020), No. 30, p. 7760. doi: 10.1039/D0SC00755B
|