Tianhua Zhang, Longheng Xiao, Guibo Qiu, Huigang Wang, Min Guo, Xiangtao Huo, and Mei Zhang, Waste heat recovery from hot steel slag on the production line: Numerical simulation, validation and industrial test, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2191-2199. https://doi.org/10.1007/s12613-023-2660-3
Cite this article as:
Tianhua Zhang, Longheng Xiao, Guibo Qiu, Huigang Wang, Min Guo, Xiangtao Huo, and Mei Zhang, Waste heat recovery from hot steel slag on the production line: Numerical simulation, validation and industrial test, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2191-2199. https://doi.org/10.1007/s12613-023-2660-3
Research Article

Waste heat recovery from hot steel slag on the production line: Numerical simulation, validation and industrial test

+ Author Affiliations
  • Corresponding authors:

    Huigang Wang    E-mail: wanghuigang0822@126.com

    Mei Zhang    E-mail: zhangmei@ustb.edu.cn

  • Received: 18 January 2023Revised: 21 April 2023Accepted: 21 April 2023Available online: 22 April 2023
  • Waste heat recovery from hot steel slag was determined in a granular bed through the combination of numerical simulation and an industrial test method. First, the effective thermal conductivity of the granular bed was calculated. Then, the unsteady-state model was used to simulate the heat recovery under three different flow fields (O-type, S-type, and nonshielding type (Nontype)). Second, the simulation results were validated by in-situ industrial experiments. The two methods confirmed that the heat recovery efficiencies of the flow fields from high to low followed the order of Nontype, S-type, and O-type. Finally, heat recovery was carried out under the Nontype flow field in an industrial test. The heat recovery efficiency increased from ~76% and ~78% to ~81% when the steel slag thickness decreased from 400 and 300 to 200 mm, corresponding to reductions in the steel slag mass from 3.96 and 2.97 to 1.98 t with a blower air volume of 14687 m3/h. Therefore, the research results showed that numerical simulation can not only guide experiments on waste heat recovery but also optimize the flow field. Most importantly, the method proposed in this paper has achieved higher waste heat recovery from hot steel slag in industrial scale.
  • loading
  • [1]
    H. Matsuura, X. Yang, G. Li, Z. Yuan, and F. Tsukihashi, Recycling of ironmaking and steelmaking slags in Japan and China, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 739.[PubMed]. doi: 10.1007/s12613-021-2400-5
    [2]
    Y. Sun, S, Seetharaman, Q, Liu, Z, Zhang, L, Liu, and X. Wang, Integrated biomass gasification using the waste heat from hot slags: Control of syngas and polluting gas releases, Energy, 114(2016), p. 165. doi: 10.1016/j.energy.2016.07.161
    [3]
    N. Shigaki, H. Tobo, S. Ozawa, Y. Ta, and K. Hagiwara, Heat recovery process from packed bed of hot slag plates, ISIJ Int., 55(2015), No. 10, p. 2258. doi: 10.2355/isijinternational.ISIJINT-2015-169
    [4]
    R.M. McDavid and B.G. Thomas, Flow and thermal behavior of the top surface flux/powder layers in continuous casting molds, Metall. Mater. Trans. B, 27(1996), No. 4, p. 672. doi: 10.1007/BF02915666
    [5]
    Y.Q. Sun, Z.T. Zhang, L.L. Liu, and X.D. Wang, Heat recovery from high temperature slags: A review of chemical methods, Energies, 8(2015), No. 3, p. 1917. doi: 10.3390/en8031917
    [6]
    L. Andreas, S. Diener, and A. Lagerkvist, Steel slags in a landfill top cover - Experiences from a full-scale experiment, Waste Manage., 34(2014), No. 3, p. 692. doi: 10.1016/j.wasman.2013.12.003
    [7]
    L.H. Zhao, W. Wei, H. Bai, X. Zhang, and D.Q. Cang, Synthesis of steel slag ceramics: Chemical composition and crystalline phases of raw materials, Int. J. Miner. Metall. Mater., 22(2015), No. 3, p. 325. doi: 10.1007/s12613-015-1077-z
    [8]
    L.D. Poulikakos, C. Papadaskalopoulou, B. Hofko, et al., Harvesting the unexplored potential of European waste materials for road construction, Resour. Conserv. Recycl., 116(2017), p. 32. doi: 10.1016/j.resconrec.2016.09.008
    [9]
    M.X. Shi, Q. Wang, and Z.K. Zhou, Comparison of the properties between high-volume fly ash concrete and high-volume steel slag concrete under temperature matching curing condition, Constr. Build. Mater., 98(2015), p. 649. doi: 10.1016/j.conbuildmat.2015.08.134
    [10]
    P.E. Tsakiridis, G.D. Papadimitriou, S. Tsivilis, and C. Koroneos, Utilization of steel slag for Portland cement clinker production, J. Hazard. Mater., 152(2008), No. 2, p. 805. doi: 10.1016/j.jhazmat.2007.07.093
    [11]
    P. Xue, A.J. Xu, D.F. He, et al., Research on the sintering process and characteristics of belite sulphoaluminate cement produced by BOF slag, Constr. Build. Mater., 122(2016), p. 567. doi: 10.1016/j.conbuildmat.2016.06.098
    [12]
    B. Ismail and W. Ahmed, Thermoelectric power generation using waste-heat energy as an alternative green technology, Recent Pat. Electr. Eng., 2(2009), No. 1, p. 27. doi: 10.2174/1874476110902010027
    [13]
    G. Bisio, Energy recovery from molten slag and exploitation of the recovered energy, Energy, 22(1997), No. 5, p. 501. doi: 10.1016/S0360-5442(96)00149-1
    [14]
    H.N. Zhang, J.P. Dong, C. Wei, C.F. Cao, and Z.T. Zhang, Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO2 emission reduction, Energy, 239(2022), art. No. 122543. doi: 10.1016/j.energy.2021.122543
    [15]
    W.B. Chen, M.H. Wang, L.L. Liu, H. Wang, and X.D. Wang, Three-stage method energy–mass coupling high-efficiency utilization process of high-temperature molten steel slag, Metall. Mater. Trans. B, 52(2021), No. 5, p. 3004. doi: 10.1007/s11663-021-02213-7
    [16]
    N. Maruoka, T. Mizuochi, H. Purwanto, and T. Akiyama, Feasibility study for recovering waste heat in the steelmaking industry using a chemical recuperator, ISIJ Int., 44(2004), No. 2, p. 257. doi: 10.2355/isijinternational.44.257
    [17]
    W. van Antwerpen, C.G. du Toit, and P.G. Rousseau, A review of correlations to model the packing structure and effective thermal conductivity in packed beds of mono-sized spherical particles, Nucl. Eng. Des., 240(2010), No. 7, p. 1803. doi: 10.1016/j.nucengdes.2010.03.009
    [18]
    J.D. Felske, Approximate radiation shape factors between two spheres, J. Heat Transfer, 100(1978), No. 3, p. 547. doi: 10.1115/1.3450848
    [19]
    J.R. Howell, The Monte Carlo method in radiative heat transfer, J. Heat Transfer, 120(1998), No. 3, p. 547. doi: 10.1115/1.2824310
    [20]
    M.L. Pitso, Characterisation of Long Range Radiation Heat Transfer in Packed Pebble Bed [Dissertation], North-West University, Evanston, 2011, p. 68.
    [21]
    S.C. Wang, C.Y. Xu, W. Liu, and Z.C. Liu, Numerical study on heat transfer performance in packed bed, Energies, 12(2019), No. 3, art. No. 414. doi: 10.3390/en12030414
    [22]
    R.S. Abdulmohsin and M.H. Al-Dahhan, Characteristics of convective heat transport in a packed pebble-bed reactor, Nucl. Eng. Des., 284(2015), p. 143. doi: 10.1016/j.nucengdes.2014.11.041
    [23]
    A. Sharma, A. Thakur, S.K. Saha, A. Sharma, D. Sharma, and P. Chaudhuri, Thermal-hydraulic characteristics of purge gas in a rectangular packed pebble bed of a fusion reactor using DEM-CFD and porous medium analyses, Fusion Eng. Des., 160(2020), art. No. 111848. doi: 10.1016/j.fusengdes.2020.111848
    [24]
    T.H. Zhang, G.B. Qiu, H.G. Wang, M. Guo, F.Q. Cheng, and M. Zhang, In-suit industrial tests of the highly efficient recovery of waste heat and reutilization of the hot steel slag, ACS Sustainable Chem. Eng., 9(2021), No. 10, p. 3955. doi: 10.1021/acssuschemeng.1c00081
    [25]
    T.H. Zhang, C.P. Liu, H.G. Wang, M. Guo, M. Zhang, Numerical simulation of radiative heat transfer in a binary-size granular bed, Therm. Sci., 26(2022), No. 6B, p. 5095.
    [26]
    T. Mizuochi, T. Akiyama, T. Shimada, E. Kasai, and J.I. Yagi, Feasibility of rotary cup atomizer for slag granulation, ISIJ Int., 41(2001), No. 12, p. 1423. doi: 10.2355/isijinternational.41.1423
    [27]
    H. Zhang, H. Wang, X. Zhu, et al., A review of waste heat recovery technologies towards molten slag in steel industry, Appl. Energy, 112(2013), p. 956. doi: 10.1016/j.apenergy.2013.02.019
    [28]
    Y. Zhang, J. Zhang, T.Y. Zhang, Y.M. Liu, and Z.B. Han, Analysis of steel slag treatment technology and waste heat recovery technology, China Metall., 24(2014), No. 8, p. 33. doi: 10.13228/j.boyuan.issn1006-9356.20130209
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(389) PDF Downloads(55) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return