Cite this article as: |
Xiaojia Yang, Jinghuan Jia, Qing Li, Renzheng Zhu, Jike Yang, Zhiyong Liu, Xuequn Cheng, and Xiaogang Li, Stress-assisted corrosion mechanism of 3Ni steel by using gradient boosting decision tree machining learning method, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1311-1321. https://doi.org/10.1007/s12613-023-2661-2 |
Xiaojia Yang E-mail: yangxiaojia@ustb.edu.cn
Xiaogang Li E-mail: lixiaogang@ustb.edu.cn
[1] |
X.G. Li, D.W. Zhang, Z.Y. Liu, Z. Li, C.W. Du, and C.F. Dong, Materials science: Share corrosion data, Nature, 527(2015), No. 7579, p. 441. doi: 10.1038/527441a
|
[2] |
X.J. Yang, Y. Yang, M.H. Sun, et al., A new understanding of the effect of Cr on the corrosion resistance evolution of weathering steel based on big data technology, J. Mater. Sci. Technol., 104(2022), p. 67. doi: 10.1016/j.jmst.2021.05.086
|
[3] |
Z.B. Pei, X.Q. Cheng, X.J. Yang, et al., Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors, J. Mater. Sci. Technol., 64(2021), p. 214. doi: 10.1016/j.jmst.2020.01.023
|
[4] |
X.J. Yang, J.K. Yang, Y. Yang, et al., Data-mining and atmospheric corrosion resistance evaluation of Sn- and Sb-additional low alloy steel based on big data technology, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 825. doi: 10.1007/s12613-022-2457-9
|
[5] |
Y.J. Zhi, Z.H. Jin, L. Lu, et al., Improving atmospheric corrosion prediction through key environmental factor identification by random forest-based model, Corros. Sci., 178(2021), art. No. 109084. doi: 10.1016/j.corsci.2020.109084
|
[6] |
Z.B. Pei, D.W. Zhang, Y.J. Zhi, et al., Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning, Corros. Sci., 170(2020), art. No. 108697. doi: 10.1016/j.corsci.2020.108697
|
[7] |
D.D. Macdonald, Y.K. Zhu, J. Yang, et al., Corrosion of rebar in concrete. Part IV. On the theoretical basis of the chloride threshold, Corros. Sci., 185(2021), art. No. 109460. doi: 10.1016/j.corsci.2021.109460
|
[8] |
Y.K. Zhu, D.D. Macdonald, J. Qiu, and M. Urquidi-Macdonald, Corrosion of rebar in concrete. Part III: Artificial Neural Network analysis of chloride threshold data, Corros. Sci., 185(2021), art. No. 109438. doi: 10.1016/j.corsci.2021.109438
|
[9] |
D.R. Feenstra, A. Molotnikov, and N. Birbilis, Utilisation of artificial neural networks to rationalise processing windows in directed energy deposition applications, Mater. Des., 198(2021), art. No. 109342. doi: 10.1016/j.matdes.2020.109342
|
[10] |
M.J. Jiménez-Come, E. Muñoz, R. García, et al., Pitting corrosion behaviour of austenitic stainless steel using artificial intelligence techniques, J. Appl. Log., 10(2012), No. 4, p. 291. doi: 10.1016/j.jal.2012.07.005
|
[11] |
B. Koo, S. La, N.W. Cho, and Y. Yu, Using support vector machines to classify building elements for checking the semantic integrity of building information models, Autom. Constr., 98(2019), p. 183. doi: 10.1016/j.autcon.2018.11.015
|
[12] |
H.Y. Wu, H.G. Lei, and Y.F. Chen, Grey relational analysis of static tensile properties of structural steel subjected to urban industrial atmospheric corrosion and accelerated corrosion, Constr. Build. Mater., 315(2022), art. No. 125706. doi: 10.1016/j.conbuildmat.2021.125706
|
[13] |
J.M. Yao, W. Liang, and J.Y. Xiong, Novel intelligent diagnosis method of oil and gas pipeline defects with transfer deep learning and feature fusion, Int. J. Press. Vessels Pip., 200(2022), art. No. 104781. doi: 10.1016/j.ijpvp.2022.104781
|
[14] |
H.D. Fu, H.T. Zhang, C.S. Wang, W. Yong, and J.X. Xie, Recent progress in the machine learning-assisted rational design of alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 635. doi: 10.1007/s12613-022-2458-8
|
[15] |
H.T. Zhang, H.D. Fu, Y.H. Shen, and J.X. Xie, Rapid design of secondary deformation-aging parameters for ultra-low Co content Cu–Ni–Co–Si–X alloy via Bayesian optimization machine learning, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1197. doi: 10.1007/s12613-022-2479-3
|
[16] |
G.F. Pan, F.Y. Wang, C.L. Shang, et al., Advances in machine learning- and artificial intelligence-assisted material design of steels, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1003. doi: 10.1007/s12613-022-2595-0
|
[17] |
X.J. Yang, M.H. Liu, Z.Y. Liu, C.W. Du, and X.G. Li, Failure analysis of a 304 stainless steel heat exchanger in liquid sulfur recovery units, Eng. Fail. Anal., 116(2020), art. No. 104729. doi: 10.1016/j.engfailanal.2020.104729
|
[18] |
X.J. Yang, J.M. Shao, Z.Y. Liu, et al., Stress-assisted microbiologically influenced corrosion mechanism of 2205 duplex stainless steel caused by sulfate-reducing bacteria, Corros. Sci., 173(2020), art. No. 108746. doi: 10.1016/j.corsci.2020.108746
|
[19] |
J.H. Jia, X.Q. Cheng, X.J. Yang, X.G. Li, and W. Li, A study for corrosion behavior of a new-type weathering steel used in harsh marine environment, Constr. Build. Mater., 259(2020), art. No. 119760. doi: 10.1016/j.conbuildmat.2020.119760
|
[20] |
J.H. Jia, Z.Y. Liu, X.G. Li, C.W. Du, and W. Li, Comparative study on the stress corrosion cracking of a new Ni-advanced high strength steel prepared by TMCP, direct quenching, and quenching & tempering, Mater. Sci. Eng. A, 825(2021), art. No. 141854. doi: 10.1016/j.msea.2021.141854
|
[1] | Jie Wang, Wei Wang, Xuheng Chen, Junfang Bao, Qiuyue Hao, Heng Zheng, Runsheng Xu. Role of iron ore in enhancing gasification of iron coke: Structural evolution, influence mechanism and kinetic analysis[J]. International Journal of Minerals, Metallurgy and Materials, 2025, 32(1): 58-69. doi: 10.1007/s12613-024-2873-0 |
[2] | Lei-zhen Peng, Zhou-hua Jiang, Xin Geng. Reaction mechanisms between molten CaF2-based slags and molten 9CrMoCoB steel[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(5): 611-619. doi: 10.1007/s12613-020-1976-5 |
[3] | Chun-ming Ai, Ping-ping Sun, Ai-xiang Wu, Xun Chen, Chao Liu. Accelerating leaching of copper ore with surfactant and the analysis of reaction kinetics[J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(3): 274-281. doi: 10.1007/s12613-019-1735-7 |
[4] | Jin-yang Zhu, Li-ning Xu, Min-xu Lu, Wei Chang. Cathodic reaction mechanisms in CO2 corrosion of low-Cr steels[J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(11): 1405-1414. doi: 10.1007/s12613-019-1861-2 |
[5] | Reza Beygi, Majid Zarezadeh Mehrizi, Hossein Mostaan, Mahdi Rafiei, Ahmadreza Abbasian. Synthesis of a NiTi2-AlNi-Al2O3 nanocomposite by mechanical alloying and heat treatment of Al-TiO2-NiO[J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(3): 345-349. doi: 10.1007/s12613-019-1743-7 |
[6] | Hendrik Setiawan, Himawan Tri Bayu Murti Petrus, Indra Perdana. Reaction kinetics modeling for lithium and cobalt recovery from spent lithium-ion batteries using acetic acid[J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(1): 98-107. doi: 10.1007/s12613-019-1713-0 |
[7] | Dong-wen Xiang, Feng-man Shen, Jia-long Yang, Xin Jiang, Hai-yan Zheng, Qiang-jian Gao, Jia-xin Li. Combustion characteristics of unburned pulverized coal and its reaction kinetics with CO2[J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(7): 811-821. doi: 10.1007/s12613-019-1791-z |
[8] | Tao Xu, Xiao-jun Ning, Guang-wei Wang, Wang Liang, Jian-liang Zhang, Yan-jiang Li, Hai-yang Wang, Chun-he Jiang. Combustion characteristics and kinetic analysis of co-combustion between bag dust and pulverized coal[J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(12): 1412-1422. doi: 10.1007/s12613-018-1695-3 |
[9] | Shang-hao Tong, Yong Li, Ming-wei Yan, Peng Jiang, Jia-jia Ma, Dan-dan Yue. In situ reaction mechanism of MgAlON in Al-Al2O3-MgO composites at 1700℃ under flowing N2[J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(9): 1061-1066. doi: 10.1007/s12613-017-1496-0 |
[10] | Yi-ran Liu, Jian-liang Zhang, Zheng-jian Liu, Xiang-dong Xing. Phase transformation behavior of titanium during carbothermic reduction of titanomagnetite ironsand[J]. International Journal of Minerals, Metallurgy and Materials, 2016, 23(7): 760-768. doi: 10.1007/s12613-016-1290-4 |
[11] | Ru-fei Wei, Da-qiang Cang, Ling-ling Zhang, Yuan-yuan Bai. Staged reaction kinetics and characteristics of iron oxide direct reduction by carbon[J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(10): 1025-1032. doi: 10.1007/s12613-015-1164-1 |
[12] | Jue Tang, Man-sheng Chu, Feng Li, Ya-ting Tang, Zheng-gen Liu, Xiang-xin Xue. Reduction mechanism of high-chromium vanadium-titanium magnetite pellets by H2-CO-CO2 gas mixtures[J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(6): 562-572. doi: 10.1007/s12613-015-1108-9 |
[13] | Qiang-jian Gao, Feng-man Shen, Xin Jiang, Guo Wei, Hai-yan Zheng. Gas-solid reduction kinetic model of MgO-fluxed pellets[J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(1): 12-17. doi: 10.1007/s12613-014-0859-z |
[14] | Teng Zhang, Xiao-jun Hu, Kuo-Chih Chou. Kinetic study on the reaction between CO2-CO and wustite using the isotope exchange method[J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(2): 125-130. doi: 10.1007/s12613-013-0703-x |
[15] | Ali Rasooli, Mehdi Divandari, Hamid Reza Shahverdi, Mohammad Ali Boutorabi. Kinetics and mechanism of titanium hydride powder and aluminum melt reaction[J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(2): 165-172. doi: 10.1007/s12613-012-0533-2 |
[16] | Jia-yuan Huang, Bi-tao Yu, Fu-shen Li, Wei-hua Qiu. Forecasting conductivities of LiBOB-EC/DEC electrolytes by the mass triangle model[J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(4): 463-467. doi: 10.1016/S1674-4799(09)60081-9 |
[17] | Jianhua Liu, Jiayun Zhang. Assessment of the apparent activation energies for gas/solid reactions-carbonate decomposition[J]. International Journal of Minerals, Metallurgy and Materials, 2003, 10(2): 25-29. |
[18] | Ying Qu. Mass transfer coefficients in metallurgical reactors[J]. International Journal of Minerals, Metallurgy and Materials, 2003, 10(2): 1-9. |
[19] | Chunbao Xu, Shengli Wu, Daqiang Cang. Numerical Modeling of NO Formation during Packed-bed Combustion of Coke Granules[J]. International Journal of Minerals, Metallurgy and Materials, 2000, 7(4): 261-268. |
[20] | Jian Zhang. Calculating Model of Mass Action Concentrations for Fe-Cr-P Melts and Optimization of Thermodynamic Parameters[J]. International Journal of Minerals, Metallurgy and Materials, 1999, 6(1): 11-14. |
[1] | Wen-zhi Xia, Ting Wu, Jie Lei, et al. Directional Sulfur Removal from Ladle Furnace Slag by Electric Field Strengthening Treatment. steel research international, 2023. https://doi.org/10.1002/srin.202300182 | |
[2] | Noureddine Sitouah, Abdelhamid Cherfi, Mehena Oualit, et al. Production of Lamellar Cast Iron EN-GJL-150 From Local Manganese-Rich Pig Iron by Modification of the Melting Process. Advances in Materials Science, 2022, 22(4): 69. https://doi.org/10.2478/adms-2022-0020 | |
[3] | Gao-Jun Zhang, Shao-Yi Wu, Chen-Hao Liang, et al. DFT calculations of the local structures and the EPR parameters for Rh2+ doped AO (A = Mg, Ca) crystals. Chemical Physics, 2020, 534: 110734. https://doi.org/10.1016/j.chemphys.2020.110734 | |
[4] | Sheng-Chao Duan, Xiao Shi, Fei Wang, et al. A Review of Methodology Development for Controlling Loss of Alloying Elements During the Electroslag Remelting Process. Metallurgical and Materials Transactions B, 2019, 50(6): 3055. https://doi.org/10.1007/s11663-019-01665-2 | |
[5] | Sheng-Chao Duan, Xiao Shi, Fei Wang, et al. Investigation of desulfurization of Inconel 718 superalloys by ESR type slags with different TiO2 content. Journal of Materials Research and Technology, 2019, 8(3): 2508. https://doi.org/10.1016/j.jmrt.2019.01.027 |