Cite this article as: |
Xiaojia Yang, Jinghuan Jia, Qing Li, Renzheng Zhu, Jike Yang, Zhiyong Liu, Xuequn Cheng, and Xiaogang Li, Stress-assisted corrosion mechanism of 3Ni steel by using gradient boosting decision tree machining learning method, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1311-1321. https://doi.org/10.1007/s12613-023-2661-2 |
Xiaojia Yang E-mail: yangxiaojia@ustb.edu.cn
Xiaogang Li E-mail: lixiaogang@ustb.edu.cn
[1] |
X.G. Li, D.W. Zhang, Z.Y. Liu, Z. Li, C.W. Du, and C.F. Dong, Materials science: Share corrosion data, Nature, 527(2015), No. 7579, p. 441. doi: 10.1038/527441a
|
[2] |
X.J. Yang, Y. Yang, M.H. Sun, et al., A new understanding of the effect of Cr on the corrosion resistance evolution of weathering steel based on big data technology, J. Mater. Sci. Technol., 104(2022), p. 67. doi: 10.1016/j.jmst.2021.05.086
|
[3] |
Z.B. Pei, X.Q. Cheng, X.J. Yang, et al., Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors, J. Mater. Sci. Technol., 64(2021), p. 214. doi: 10.1016/j.jmst.2020.01.023
|
[4] |
X.J. Yang, J.K. Yang, Y. Yang, et al., Data-mining and atmospheric corrosion resistance evaluation of Sn- and Sb-additional low alloy steel based on big data technology, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 825. doi: 10.1007/s12613-022-2457-9
|
[5] |
Y.J. Zhi, Z.H. Jin, L. Lu, et al., Improving atmospheric corrosion prediction through key environmental factor identification by random forest-based model, Corros. Sci., 178(2021), art. No. 109084. doi: 10.1016/j.corsci.2020.109084
|
[6] |
Z.B. Pei, D.W. Zhang, Y.J. Zhi, et al., Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning, Corros. Sci., 170(2020), art. No. 108697. doi: 10.1016/j.corsci.2020.108697
|
[7] |
D.D. Macdonald, Y.K. Zhu, J. Yang, et al., Corrosion of rebar in concrete. Part IV. On the theoretical basis of the chloride threshold, Corros. Sci., 185(2021), art. No. 109460. doi: 10.1016/j.corsci.2021.109460
|
[8] |
Y.K. Zhu, D.D. Macdonald, J. Qiu, and M. Urquidi-Macdonald, Corrosion of rebar in concrete. Part III: Artificial Neural Network analysis of chloride threshold data, Corros. Sci., 185(2021), art. No. 109438. doi: 10.1016/j.corsci.2021.109438
|
[9] |
D.R. Feenstra, A. Molotnikov, and N. Birbilis, Utilisation of artificial neural networks to rationalise processing windows in directed energy deposition applications, Mater. Des., 198(2021), art. No. 109342. doi: 10.1016/j.matdes.2020.109342
|
[10] |
M.J. Jiménez-Come, E. Muñoz, R. García, et al., Pitting corrosion behaviour of austenitic stainless steel using artificial intelligence techniques, J. Appl. Log., 10(2012), No. 4, p. 291. doi: 10.1016/j.jal.2012.07.005
|
[11] |
B. Koo, S. La, N.W. Cho, and Y. Yu, Using support vector machines to classify building elements for checking the semantic integrity of building information models, Autom. Constr., 98(2019), p. 183. doi: 10.1016/j.autcon.2018.11.015
|
[12] |
H.Y. Wu, H.G. Lei, and Y.F. Chen, Grey relational analysis of static tensile properties of structural steel subjected to urban industrial atmospheric corrosion and accelerated corrosion, Constr. Build. Mater., 315(2022), art. No. 125706. doi: 10.1016/j.conbuildmat.2021.125706
|
[13] |
J.M. Yao, W. Liang, and J.Y. Xiong, Novel intelligent diagnosis method of oil and gas pipeline defects with transfer deep learning and feature fusion, Int. J. Press. Vessels Pip., 200(2022), art. No. 104781. doi: 10.1016/j.ijpvp.2022.104781
|
[14] |
H.D. Fu, H.T. Zhang, C.S. Wang, W. Yong, and J.X. Xie, Recent progress in the machine learning-assisted rational design of alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 635. doi: 10.1007/s12613-022-2458-8
|
[15] |
H.T. Zhang, H.D. Fu, Y.H. Shen, and J.X. Xie, Rapid design of secondary deformation-aging parameters for ultra-low Co content Cu–Ni–Co–Si–X alloy via Bayesian optimization machine learning, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1197. doi: 10.1007/s12613-022-2479-3
|
[16] |
G.F. Pan, F.Y. Wang, C.L. Shang, et al., Advances in machine learning- and artificial intelligence-assisted material design of steels, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1003. doi: 10.1007/s12613-022-2595-0
|
[17] |
X.J. Yang, M.H. Liu, Z.Y. Liu, C.W. Du, and X.G. Li, Failure analysis of a 304 stainless steel heat exchanger in liquid sulfur recovery units, Eng. Fail. Anal., 116(2020), art. No. 104729. doi: 10.1016/j.engfailanal.2020.104729
|
[18] |
X.J. Yang, J.M. Shao, Z.Y. Liu, et al., Stress-assisted microbiologically influenced corrosion mechanism of 2205 duplex stainless steel caused by sulfate-reducing bacteria, Corros. Sci., 173(2020), art. No. 108746. doi: 10.1016/j.corsci.2020.108746
|
[19] |
J.H. Jia, X.Q. Cheng, X.J. Yang, X.G. Li, and W. Li, A study for corrosion behavior of a new-type weathering steel used in harsh marine environment, Constr. Build. Mater., 259(2020), art. No. 119760. doi: 10.1016/j.conbuildmat.2020.119760
|
[20] |
J.H. Jia, Z.Y. Liu, X.G. Li, C.W. Du, and W. Li, Comparative study on the stress corrosion cracking of a new Ni-advanced high strength steel prepared by TMCP, direct quenching, and quenching & tempering, Mater. Sci. Eng. A, 825(2021), art. No. 141854. doi: 10.1016/j.msea.2021.141854
|