Xiaojia Yang, Jinghuan Jia, Qing Li, Renzheng Zhu, Jike Yang, Zhiyong Liu, Xuequn Cheng,  and Xiaogang Li, Stress-assisted corrosion mechanism of 3Ni steel by using gradient boosting decision tree machining learning method, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1311-1321. https://doi.org/10.1007/s12613-023-2661-2
Cite this article as:
Xiaojia Yang, Jinghuan Jia, Qing Li, Renzheng Zhu, Jike Yang, Zhiyong Liu, Xuequn Cheng,  and Xiaogang Li, Stress-assisted corrosion mechanism of 3Ni steel by using gradient boosting decision tree machining learning method, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1311-1321. https://doi.org/10.1007/s12613-023-2661-2
Research Article

Stress-assisted corrosion mechanism of 3Ni steel by using gradient boosting decision tree machining learning method

+ Author Affiliations
  • Corresponding authors:

    Xiaojia Yang    E-mail: yangxiaojia@ustb.edu.cn

    Xiaogang Li    E-mail: lixiaogang@ustb.edu.cn

  • Received: 28 February 2023Revised: 13 April 2023Accepted: 21 April 2023Available online: 22 April 2023
  • Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development, resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for strength enhancement becoming a trend. The stress-assisted corrosion behavior of a novel designed high-strength 3Ni steel was investigated in the current study using the corrosion big data method. The information on the corrosion process was recorded using the galvanic corrosion current monitoring method. The gradient boosting decision tree (GBDT) machine learning method was used to mine the corrosion mechanism, and the importance of the structure factor was investigated. Field exposure tests were conducted to verify the calculated results using the GBDT method. Results indicated that the GBDT method can be effectively used to study the influence of structural factors on the corrosion process of 3Ni steel. Different mechanisms for the addition of Mn and Cu to the stress-assisted corrosion of 3Ni steel suggested that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel during the early stage of corrosion. When the corrosion reached a stable state, the increase in Mn element content increased the corrosion rate of 3Ni steel, while Cu reduced this rate. In the presence of stress, the increase in Mn element content and Cu addition can inhibit the corrosion process. The corrosion law of outdoor-exposed 3Ni steel is consistent with the law based on corrosion big data technology, verifying the reliability of the big data evaluation method and data prediction model selection.
  • loading
  • [1]
    X.G. Li, D.W. Zhang, Z.Y. Liu, Z. Li, C.W. Du, and C.F. Dong, Materials science: Share corrosion data, Nature, 527(2015), No. 7579, p. 441. doi: 10.1038/527441a
    [2]
    X.J. Yang, Y. Yang, M.H. Sun, et al., A new understanding of the effect of Cr on the corrosion resistance evolution of weathering steel based on big data technology, J. Mater. Sci. Technol., 104(2022), p. 67. doi: 10.1016/j.jmst.2021.05.086
    [3]
    Z.B. Pei, X.Q. Cheng, X.J. Yang, et al., Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors, J. Mater. Sci. Technol., 64(2021), p. 214. doi: 10.1016/j.jmst.2020.01.023
    [4]
    X.J. Yang, J.K. Yang, Y. Yang, et al., Data-mining and atmospheric corrosion resistance evaluation of Sn- and Sb-additional low alloy steel based on big data technology, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 825. doi: 10.1007/s12613-022-2457-9
    [5]
    Y.J. Zhi, Z.H. Jin, L. Lu, et al., Improving atmospheric corrosion prediction through key environmental factor identification by random forest-based model, Corros. Sci., 178(2021), art. No. 109084. doi: 10.1016/j.corsci.2020.109084
    [6]
    Z.B. Pei, D.W. Zhang, Y.J. Zhi, et al., Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning, Corros. Sci., 170(2020), art. No. 108697. doi: 10.1016/j.corsci.2020.108697
    [7]
    D.D. Macdonald, Y.K. Zhu, J. Yang, et al., Corrosion of rebar in concrete. Part IV. On the theoretical basis of the chloride threshold, Corros. Sci., 185(2021), art. No. 109460. doi: 10.1016/j.corsci.2021.109460
    [8]
    Y.K. Zhu, D.D. Macdonald, J. Qiu, and M. Urquidi-Macdonald, Corrosion of rebar in concrete. Part III: Artificial Neural Network analysis of chloride threshold data, Corros. Sci., 185(2021), art. No. 109438. doi: 10.1016/j.corsci.2021.109438
    [9]
    D.R. Feenstra, A. Molotnikov, and N. Birbilis, Utilisation of artificial neural networks to rationalise processing windows in directed energy deposition applications, Mater. Des., 198(2021), art. No. 109342. doi: 10.1016/j.matdes.2020.109342
    [10]
    M.J. Jiménez-Come, E. Muñoz, R. García, et al., Pitting corrosion behaviour of austenitic stainless steel using artificial intelligence techniques, J. Appl. Log., 10(2012), No. 4, p. 291. doi: 10.1016/j.jal.2012.07.005
    [11]
    B. Koo, S. La, N.W. Cho, and Y. Yu, Using support vector machines to classify building elements for checking the semantic integrity of building information models, Autom. Constr., 98(2019), p. 183. doi: 10.1016/j.autcon.2018.11.015
    [12]
    H.Y. Wu, H.G. Lei, and Y.F. Chen, Grey relational analysis of static tensile properties of structural steel subjected to urban industrial atmospheric corrosion and accelerated corrosion, Constr. Build. Mater., 315(2022), art. No. 125706. doi: 10.1016/j.conbuildmat.2021.125706
    [13]
    J.M. Yao, W. Liang, and J.Y. Xiong, Novel intelligent diagnosis method of oil and gas pipeline defects with transfer deep learning and feature fusion, Int. J. Press. Vessels Pip., 200(2022), art. No. 104781. doi: 10.1016/j.ijpvp.2022.104781
    [14]
    H.D. Fu, H.T. Zhang, C.S. Wang, W. Yong, and J.X. Xie, Recent progress in the machine learning-assisted rational design of alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 635. doi: 10.1007/s12613-022-2458-8
    [15]
    H.T. Zhang, H.D. Fu, Y.H. Shen, and J.X. Xie, Rapid design of secondary deformation-aging parameters for ultra-low Co content Cu–Ni–Co–Si–X alloy via Bayesian optimization machine learning, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1197. doi: 10.1007/s12613-022-2479-3
    [16]
    G.F. Pan, F.Y. Wang, C.L. Shang, et al., Advances in machine learning- and artificial intelligence-assisted material design of steels, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1003. doi: 10.1007/s12613-022-2595-0
    [17]
    X.J. Yang, M.H. Liu, Z.Y. Liu, C.W. Du, and X.G. Li, Failure analysis of a 304 stainless steel heat exchanger in liquid sulfur recovery units, Eng. Fail. Anal., 116(2020), art. No. 104729. doi: 10.1016/j.engfailanal.2020.104729
    [18]
    X.J. Yang, J.M. Shao, Z.Y. Liu, et al., Stress-assisted microbiologically influenced corrosion mechanism of 2205 duplex stainless steel caused by sulfate-reducing bacteria, Corros. Sci., 173(2020), art. No. 108746. doi: 10.1016/j.corsci.2020.108746
    [19]
    J.H. Jia, X.Q. Cheng, X.J. Yang, X.G. Li, and W. Li, A study for corrosion behavior of a new-type weathering steel used in harsh marine environment, Constr. Build. Mater., 259(2020), art. No. 119760. doi: 10.1016/j.conbuildmat.2020.119760
    [20]
    J.H. Jia, Z.Y. Liu, X.G. Li, C.W. Du, and W. Li, Comparative study on the stress corrosion cracking of a new Ni-advanced high strength steel prepared by TMCP, direct quenching, and quenching & tempering, Mater. Sci. Eng. A, 825(2021), art. No. 141854. doi: 10.1016/j.msea.2021.141854
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(429) PDF Downloads(46) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return