Cite this article as: |
Jiabing Miao, Yingxiao Du, Ruotong Li, Zekun Zhang, Ningning Zhao, Lei Dai, Ling Wang, and Zhangxing He, Recent advances and perspectives of zinc metal-free anodes for zinc ion batteries, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 33-47. https://doi.org/10.1007/s12613-023-2665-y |
Zekun Zhang E-mail: zhangzekun1020@163.com
Lei Dai E-mail: dailei_b@163.com
Zhangxing He E-mail: zxhe@ncst.edu.cn
[1] |
B. Dunn, H. Kamath, and J.M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science, 334(2011), No. 6058, p. 928. doi: 10.1126/science.1212741
|
[2] |
M. Winter and R.J. Brodd, What are batteries, fuel cells, and supercapacitors?, Chem. Rev., 104(2004), No. 10, p. 4245. doi: 10.1021/cr020730k
|
[3] |
D. Larcher and J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem., 7(2015), No. 1, p. 19. doi: 10.1038/nchem.2085
|
[4] |
J.B. Goodenough and Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater., 22(2010), No. 3, p. 587. doi: 10.1021/cm901452z
|
[5] |
J.M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414(2001), No. 6861, p. 359. doi: 10.1038/35104644
|
[6] |
X. Guo, J. Zhou, C.L. Bai, X.K. Li, G.Z. Fang, and S.Q. Liang, Zn/MnO2 battery chemistry with dissolution-deposition mechanism, Mater. Today Energy, 16(2020), art. No. 100396. doi: 10.1016/j.mtener.2020.100396
|
[7] |
R.Y. Wen, Z.H. Gao, L. Luo, et al., Sandwich-structured electrospun all-fluoropolymer membranes with thermal shut-down function and enhanced electrochemical performance, Nanocomposites, 8(2022), No. 1, p. 64. doi: 10.1080/20550324.2022.2057661
|
[8] |
D.L. Chao, W.H. Zhou, C. Ye, et al., An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage, Angew. Chem. Int. Ed., 58(2019), No. 23, p. 7823. doi: 10.1002/anie.201904174
|
[9] |
F. Wang, O. Borodin, T. Gao, et al., Highly reversible zinc metal anode for aqueous batteries, Nat. Mater., 17(2018), No. 6, p. 543. doi: 10.1038/s41563-018-0063-z
|
[10] |
Y. Song, P.C. Ruan, C.W. Mao, et al., Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries, Nano Micro Lett., 14(2022), No. 1, p. 1. doi: 10.1007/s40820-021-00751-y
|
[11] |
H.G. Qin, L.L. Chen, L.M. Wang, X. Chen, and Z.H. Yang, V2O5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries, Electrochim. Acta, 306(2019), p. 307. doi: 10.1016/j.electacta.2019.03.087
|
[12] |
M.Y. Yan, P. He, Y. Chen, et al., Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries, Adv. Mater., 30(2018), No. 1, art. No. 1703725. doi: 10.1002/adma.201703725
|
[13] |
N. Zhang, X.Y. Chen, M. Yu, Z.Q. Niu, F.Y. Cheng, and J. Chen, Materials chemistry for rechargeable zinc-ion batteries, Chem. Soc. Rev., 49(2020), No. 13, p. 4203. doi: 10.1039/C9CS00349E
|
[14] |
K.Y. Zhu, T. Wu, and K. Huang, NaCa0.6V6O16·3H2O as an ultra-stable cathode for Zn-ion batteries: The roles of pre-inserted dual-cations and structural water in V3O8 layer, Adv. Energy Mater., 9(2019), No. 38, art. No. 1901968. doi: 10.1002/aenm.201901968
|
[15] |
L. Cheng, J.W. Chen, Y. Yan, et al., Metal organic frameworks derived active functional groups decorated manganese monoxide for aqueous zinc ion battery, Chem. Phys. Lett., 778(2021), art. No. 138772. doi: 10.1016/j.cplett.2021.138772
|
[16] |
S.Y. Li, D.X. Yu, L.N. Liu, et al., In-situ electrochemical induced artificial solid electrolyte interphase for MnO@C nanocomposite enabling long-lived aqueous zinc-ion batteries, Chem. Eng. J., 430(2022), art. No. 132673. doi: 10.1016/j.cej.2021.132673
|
[17] |
W.J. Li, X. Gao, Z.Y. Chen, et al., Electrochemically activated MnO cathodes for high performance aqueous zinc-ion battery, Chem. Eng. J., 402(2020), art. No. 125509. doi: 10.1016/j.cej.2020.125509
|
[18] |
T.S. Zhang, Y. Tang, G.Z. Fang, et al., Electrochemical activation of manganese-based cathode in aqueous zinc-ion electrolyte, Adv. Funct. Mater., 30(2020), No. 30, art. No. 2002711. doi: 10.1002/adfm.202002711
|
[19] |
X.H. Chen, P.C. Ruan, X.W. Wu, S.Q. Liang, and J.A. Zhou, Crystal structures, reaction mechanisms, and optimization strategies of MnO2 cathode for aqueous rechargeable zinc batteries, Acta Phys. Chim. Sin., 38(2022), No. 12, art. No. 2111003.
|
[20] |
D. Selvakumaran, A.Q. Pan, S.Q. Liang, and G.Z. Cao, A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries, J. Mater. Chem. A, 7(2019), No. 31, p. 18209. doi: 10.1039/C9TA05053A
|
[21] |
G. Zampardi and F. La Mantia, Prussian blue analogues as aqueous Zn-ion batteries electrodes: Current challenges and future perspectives, Curr. Opin. Electrochem., 21(2020), p. 84. doi: 10.1016/j.coelec.2020.01.014
|
[22] |
Y.X. Zeng, X.F. Lu, S.L. Zhang, D.Y. Luan, S. Li, and X.W. Lou, Construction of Co–Mn Prussian blue analog hollow spheres for efficient aqueous Zn-ion batteries, Angew. Chem. Int. Ed., 60(2021), No. 41, p. 22189. doi: 10.1002/anie.202107697
|
[23] |
L.N. Chen, Q.Y. An, and L.Q. Mai, Recent advances and prospects of cathode materials for rechargeable aqueous zinc-ion batteries, Adv. Mater. Interfaces, 6(2019), No. 17, art. No. 1900387. doi: 10.1002/admi.201900387
|
[24] |
Y.F. Geng, L. Pan, Z.Y. Peng, et al., Electrolyte additive engineering for aqueous Zn ion batteries, Energy Storage Mater., 51(2022), p. 733. doi: 10.1016/j.ensm.2022.07.017
|
[25] |
B. Li, X.T. Zhang, T.T. Wang, et al., Interfacial engineering strategy for high-performance Zn metal anodes, Nano Micro Lett., 14(2021), No. 1, p. 1.
|
[26] |
T.T. Wang, C.P. Li, X.S. Xie, et al., Anode materials for aqueous zinc ion batteries: Mechanisms, properties, and perspectives, ACS Nano, 14(2020), No. 12, p. 16321. doi: 10.1021/acsnano.0c07041
|
[27] |
Q. Zhang, J.Y. Luan, Y.G. Tang, X.B. Ji, and H.Y. Wang, Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries, Angew. Chem. Int. Ed., 59(2020), No. 32, p. 13180. doi: 10.1002/anie.202000162
|
[28] |
H.M. Yu, Y.J. Chen, H. Wang, et al., Engineering multi-functionalized molecular skeleton layer for dendrite-free and durable zinc batteries, Nano Energy, 99(2022), art. No. 107426. doi: 10.1016/j.nanoen.2022.107426
|
[29] |
L. Hong, X.M. Wu, L.Y. Wang, et al., Highly reversible zinc anode enabled by a cation-exchange coating with Zn-ion selective channels, ACS Nano, 16(2022), No. 4, p. 6906. doi: 10.1021/acsnano.2c02370
|
[30] |
W.C. Du, E.H. Ang, Y. Yang, Y.F. Zhang, M.H. Ye, and C.C. Li, Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries, Energy Environ. Sci., 13(2020), No. 10, p. 3330. doi: 10.1039/D0EE02079F
|
[31] |
N. Guo, W.J. Huo, X.Y. Dong, et al., A review on 3D zinc anodes for zinc ion batteries, Small Methods, 6(2022), No. 9, art. No. e2200597. doi: 10.1002/smtd.202200597
|
[32] |
R.T. Li, Y.X. Du, Y.H. Li, et al., Alloying strategy for high-performance zinc metal anodes, ACS Energy Lett., 8(2023), No. 1, p. 457. doi: 10.1021/acsenergylett.2c01960
|
[33] |
B.T. Liu, S.J. Wang, Z.L. Wang, H. Lei, Z.T. Chen, and W.J. Mai, Novel 3D nanoporous Zn–Cu alloy as long-life anode toward high-voltage double electrolyte aqueous zinc-ion batteries, Small, 16(2020), No. 22, art. No. e2001323. doi: 10.1002/smll.202001323
|
[34] |
C. Liu, Z. Luo, W.T. Deng, et al., Liquid alloy interlayer for aqueous zinc-ion battery, ACS Energy Lett., 6(2021), No. 2, p. 675. doi: 10.1021/acsenergylett.0c02569
|
[35] |
Q. Zhang, J.Y. Luan, L. Fu, et al., The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive, Angew. Chem. Int. Ed., 58(2019), No. 44, p. 15841. doi: 10.1002/anie.201907830
|
[36] |
Y.M. Zhang, J.D. Howe, S. Ben-Yoseph, Y.T. Wu, and N. Liu, Unveiling the origin of alloy-seeded and nondendritic growth of Zn for rechargeable aqueous Zn batteries, ACS Energy Lett., 6(2021), No. 2, p. 404. doi: 10.1021/acsenergylett.0c02343
|
[37] |
P. Sun, L. Ma, W.H. Zhou, et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive, Angew. Chem. Int. Ed., 60(2021), No. 33, p. 18247. doi: 10.1002/anie.202105756
|
[38] |
H.J. Ji, Z.Q. Han, Y.H. Lin, et al., Stabilizing zinc anode for high-performance aqueous zinc ion batteries via employing a novel inositol additive, J. Alloys Compd., 914(2022), art. No. 165231. doi: 10.1016/j.jallcom.2022.165231
|
[39] |
C.P. Li, X.S. Xie, H. Liu, et al., Integrated ‘all-in-one’ strategy to stabilize zinc anodes for high-performance zinc-ion batteries, Natl. Sci. Rev., 9(2021), No. 3, art. No. nwab177.
|
[40] |
Z.Y. Xing, S. Wang, A.P. Yu, and Z.W. Chen, Aqueous intercalation-type electrode materials for grid-level energy storage: Beyond the limits of lithium and sodium, Nano Energy, 50(2018), p. 229. doi: 10.1016/j.nanoen.2018.05.049
|
[41] |
W. Kaveevivitchai and A. Manthiram, High-capacity zinc-ion storage in an open-tunnel oxide for aqueous and nonaqueous Zn-ion batteries, J. Mater. Chem. A, 4(2016), No. 48, p. 18737. doi: 10.1039/C6TA07747A
|
[42] |
M.S. Chae, J.W. Heo, S.C. Lim, and S.T. Hong, Electrochemical zinc-ion intercalation properties and crystal structures of ZnMo6S8 and Zn2Mo6S8 chevrel phases in aqueous electrolytes, Inorg. Chem., 55(2016), No. 7, p. 3294. doi: 10.1021/acs.inorgchem.5b02362
|
[43] |
W. Li, K.L. Wang, S.J. Cheng, and K. Jiang, An ultrastable presodiated titanium disulfide anode for aqueous “rocking-chair” zinc ion battery, Adv. Energy Mater., 9(2019), No. 27, art. No. 1900993. doi: 10.1002/aenm.201900993
|
[44] |
L.J. Yan, X.M. Zeng, Z.H. Li, et al., An innovation: Dendrite free quinone paired with ZnMn2O4 for zinc ion storage, Mater. Today Energy, 13(2019), p. 323. doi: 10.1016/j.mtener.2019.06.011
|
[45] |
Y. Yang, J.F. Xiao, J.Y. Cai, et al., Mixed-valence copper selenide as an anode for ultralong lifespan rocking-chair Zn-ion batteries: An insight into its intercalation/extraction kinetics and charge storage mechanism, Adv. Funct. Mater., 31(2021), No. 3, art. No. 2005092. doi: 10.1002/adfm.202005092
|
[46] |
W. Li, Y.S. Ma, P. Li, X.Y. Jing, K. Jiang, and D.H. Wang, Electrochemically activated Cu2–xTe as an ultraflat discharge plateau, low reaction potential, and stable anode material for aqueous Zn-ion half and full batteries, Adv. Energy Mater., 11(2021), No. 42, art. No. 2102607. doi: 10.1002/aenm.202102607
|
[47] |
J. Cao, D.D. Zhang, Y.L. Yue, et al., Strongly coupled tungsten oxide/carbide heterogeneous hybrid for ultrastable aqueous rocking-chair zinc-ion batteries, Chem. Eng. J., 426(2021), art. No. 131893. doi: 10.1016/j.cej.2021.131893
|
[48] |
B. Wang, J.P. Yan, Y.F. Zhang, M.H. Ye, Y. Yang, and C.C. Li, In situ carbon insertion in laminated molybdenum dioxide by interlayer engineering toward ultrastable “rocking-chair” zinc-ion batteries, Adv. Funct. Mater., 31(2021), No. 30, art. No. 2102827. doi: 10.1002/adfm.202102827
|
[49] |
Q. Zhang, T.F. Duan, M.J. Xiao, et al., BiOI nanopaper As a high-capacity, long-life and insertion-type anode for a flexible quasi-solid-state Zn-ion battery, ACS Appl. Mater. Interfaces, 14(2022), No. 22, p. 25516. doi: 10.1021/acsami.2c04946
|
[50] |
X. Wang, Y.M. Wang, Y.P. Jiang, et al., Tailoring ultrahigh energy density and stable dendrite-free flexible anode with Ti3C2Tx MXene nanosheets and hydrated ammonium vanadate nanobelts for aqueous rocking-chair zinc ion batteries, Adv. Funct. Mater., 31(2021), No. 35, art. No. 2103210. doi: 10.1002/adfm.202103210
|
[51] |
T. Xiong, Y.X. Zhang, Y.M. Wang, W.S.V. Lee, and J.M. Xue, Hexagonal MoO3 as a zinc intercalation anode towards zinc metal-free zinc-ion batteries, J. Mater. Chem. A, 8(2020), No. 18, p. 9006. doi: 10.1039/D0TA02236E
|
[52] |
Y.P. Zhu, Y. Cui, and H.N. Alshareef, An anode-free Zn–MnO2 battery, Nano Lett., 21(2021), No. 3, p. 1446. doi: 10.1021/acs.nanolett.0c04519
|
[53] |
Y.Q. Jiang, K. Ma, M.L. Sun, Y.Y. Li, and J.P. Liu, All-climate stretchable dendrite-free Zn-ion hybrid supercapacitors enabled by hydrogel electrolyte engineering, Energy Environ. Mater., 6(2023), No. 2, art. No. e12357. doi: 10.1002/eem2.12357
|
[54] |
K. Mao, J.J. Shi, Q.X. Zhang, Y et al., High-capacitance MXene anode based on Zn-ion pre-intercalation strategy for degradable micro Zn-ion hybrid supercapacitors, Nano Energy, 103(2022), art. No. 107791. doi: 10.1016/j.nanoen.2022.107791
|
[55] |
J.N. Hao, X.L. Li, X.H. Zeng, D. Li, J.F. Mao, and Z.P. Guo, Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries, Energy Environ. Sci., 13(2020), No. 11, p. 3917. doi: 10.1039/D0EE02162H
|
[56] |
H. Jia, Z.Q. Wang, B. Tawiah, et al., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries, Nano Energy, 70(2020), art. No. 104523. doi: 10.1016/j.nanoen.2020.104523
|
[57] |
W.J. Lu, C.X. Xie, H.M. Zhang, and X.F. Li, Inhibition of zinc dendrite growth in zinc-based batteries, ChemSusChem, 11(2018), No. 23, p. 3996. doi: 10.1002/cssc.201801657
|
[58] |
C.P. Li, X.S. Xie, S.Q. Liang, and J. Zhou, Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries, Energy Environ. Mater., 3(2020), No. 2, p. 146. doi: 10.1002/eem2.12067
|
[59] |
Z.Y. Xing, Y.Y. Sun, X.S. Xie, et al., Zincophilic electrode interphase with appended proton reservoir ability stabilizes Zn metal anodes, Angew. Chem. Int. Ed., 62(2023), No. 5, art. No. e202215324. doi: 10.1002/anie.202215324
|
[60] |
X.F. Chen, R.S. Huang, M.Y. Ding, H.B. He, F. Wang, and S.B. Yin, Hexagonal WO3/3D porous graphene as a novel zinc intercalation anode for aqueous zinc-ion batteries, ACS Appl. Mater. Interfaces, 14(2022), No. 3, p. 3961. doi: 10.1021/acsami.1c18975
|
[61] |
B.B. Yang, T. Qin, Y.Y. Du, et al., Rocking-chair proton battery based on a low-cost “water in salt” electrolyte, Chem. Commun., 58(2022), No. 10, p. 1550. doi: 10.1039/D1CC06325A
|
[62] |
Y.W. Cheng, L.L. Luo, L. Zhong, et al., Highly reversible zinc-ion intercalation into chevrel phase Mo6S8 nanocubes and applications for advanced zinc-ion batteries, ACS Appl. Mater. Interfaces, 8(2016), No. 22, p. 13673. doi: 10.1021/acsami.6b03197
|
[63] |
M.S. Chae and S.T. Hong, Prototype system of rocking-chair Zn-ion battery adopting zinc chevrel phase anode and rhombohedral zinc hexacyanoferrate cathode, Batteries, 5(2019), No. 1, art. No. 3. doi: 10.3390/batteries5010003
|
[64] |
Z. Lv, B. Wang, M. Ye, Y. Zhang, Y. Yang, and C.C. Li, Activating the stepwise intercalation–conversion reaction of layered copper sulfide toward extremely high capacity zinc-metal-free anodes for rocking-chair zinc-ion batteries, ACS Appl. Mater. Interfaces, 14(2022), No. 1, p. 1126. doi: 10.1021/acsami.1c21168
|
[65] |
L. Wen, Y.N. Wu, S.L. Wang, et al., A novel TiSe2 (de)intercalation type anode for aqueous zinc-based energy storage, Nano Energy, 93(2022), art. No. 106896. doi: 10.1016/j.nanoen.2021.106896
|
[66] |
Y.Q. Du, B.Y. Zhang, R.K. Kang, et al., Practical conversion-type titanium telluride anodes for high-capacity long-lifespan rechargeable aqueous zinc batteries, J. Mater. Chem. A, 10(2022), No. 32, p. 16976. doi: 10.1039/D2TA04912K
|
[67] |
B.T. Zhao, S.L. Wang, Q.T. Yu, et al., A flexible, heat-resistant and self-healable “rocking-chair” zinc ion microbattery based on MXene-TiS2 (de)intercalation anode, J. Power Sources, 504(2021), art. No. 230076. doi: 10.1016/j.jpowsour.2021.230076
|
[68] |
N.N. Liu, X. Wu, Y. Zhang, et al., Building high rate capability and ultrastable dendrite-free organic anode for rechargeable aqueous zinc batteries, Adv. Sci., 7(2020), No. 14, art. No. 2000146. doi: 10.1002/advs.202000146
|
[69] |
Y. Liu, X.M. Zhou, X. Wang, et al., Hydrated titanic acid as an ultralow-potential anode for aqueous zinc-ion full batteries, Chem. Eng. J., 420(2021), art. No. 129629. doi: 10.1016/j.cej.2021.129629
|
[70] |
S.L. Leng, X.Y. Sun, Y.C. Yang, and R.H. Zhang, Borophene as an anode material for Zn-ion batteries: A first-principles investigation, Mater. Res. Express, 6(2019), No. 8, art. No. 085504. doi: 10.1088/2053-1591/ab1a88
|