Cite this article as: |
Qiusong Chen, Hailong Zhou, Yunmin Wang, Daolin Wang, Qinli Zhang, and Yikai Liu, Erosion wear at the bend of pipe during tailings slurry transportation: Numerical study considering inlet velocity, particle size and bend angle, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1608-1620. https://doi.org/10.1007/s12613-023-2672-z |
Daolin Wang E-mail: daolinw@csu.edu.cn
Supplementary Information-s12613-023-2672-z.docx |
[1] |
Q.M. Nguyen, J. Abouezzi, and L. Ristroph, Early turbulence and pulsatile flows enhance diodicity of Tesla’s macrofluidic valve, Nat. Commun., 12(2021), No. 1, art. No. 2884. doi: 10.1038/s41467-021-23009-y
|
[2] |
R. Tarodiya and B.K. Gandhi, Hydraulic performance and erosive wear of centrifugal slurry pumps - A review, Powder Technol., 305(2017), p. 27. doi: 10.1016/j.powtec.2016.09.048
|
[3] |
Q.S. Chen, S.Y. Sun, Y.M. Wang, Q.L. Zhang, L.M. Zhu, and Y.K. Liu, In-situ remediation of phosphogypsum in a cement-free pathway: Utilization of ground granulated blast furnace slag and NaOH pretreatment, Chemosphere, 313(2023), art. No. 137412. doi: 10.1016/j.chemosphere.2022.137412
|
[4] |
M.E. Ibrahim and M. Medraj, Prediction and experimental evaluation of the threshold velocity in water droplet erosion, Mater. Des., 213(2022), art. No. 110312. doi: 10.1016/j.matdes.2021.110312
|
[5] |
I. Marusic, D. Chandran, A. Rouhi, et al., An energy-efficient pathway to turbulent drag reduction, Nat. Commun., 12(2021), art. No. 5805. doi: 10.1038/s41467-021-26128-8
|
[6] |
G. Singh, S. Kumar, and S.K. Mohapatra, Erosion wear in a slurry pipe with multisized coal and bottom-ash slurries, Mater. Today, 4(2017), No. 2, p. 3565.
|
[7] |
A.X. Wu, Z. Ruan, and J.D. Wang, Rheological behavior of paste in metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 717. doi: 10.1007/s12613-022-2423-6
|
[8] |
D.L. Wang, Q.L. Zhang, Q.S. Chen, C.C. Qi, Y. Feng, and C.C. Xiao, Temperature variation characteristics in flocculation settlement of tailings and its mechanism, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1438. doi: 10.1007/s12613-020-2022-3
|
[9] |
A. Uzi, Y. Ben Ami, and A. Levy, Erosion prediction of industrial conveying pipelines, Powder Technol., 309(2017), p. 49. doi: 10.1016/j.powtec.2016.12.087
|
[10] |
H.Z. Jiao, W.B. Yang, Z.E. Ruan, J.X. Yu, J.H. Liu, and Y.X. Yang, Microscale mechanism of tailing thickening in metal mines, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1538.
|
[11] |
Q.S. Chen, L.M. Zhu, Y.M. Wang, J. Chen, and C.C. Qi, The carbon uptake and mechanical property of cemented paste backfill carbonation curing for low concentration of CO2, Sci. Total Environ., 852(2022), art. No. 158516. doi: 10.1016/j.scitotenv.2022.158516
|
[12] |
R.K. Rathore, P.K. Gupta, and N. Kumar, Numerical investigation of zinc tailings slurry flow field in a horizontal pipeline, Mater. Today Proc., 45(2021), p. 2702. doi: 10.1016/j.matpr.2020.11.541
|
[13] |
A. Uzi and A. Levy, Energy absorption by the particle and the surface during impact, Wear, 404-405(2018), p. 92. doi: 10.1016/j.wear.2018.03.007
|
[14] |
R. Camassa, D.M. Harris, R. Hunt, Z. Kilic, and R.M. McLaughlin, A first-principle mechanism for particulate aggregation and self-assembly in stratified fluids, Nat. Commun., 10(2019), No. 1, art. No. 5804. doi: 10.1038/s41467-019-13643-y
|
[15] |
Q.L. Zhang, Y.T. Li, Q.S. Chen, Y.K. Liu, Y. Feng, and D.L. Wang, Effects of temperatures and pH values on rheological properties of cemented paste backfill, J. Cent. South Univ., 28(2021), No. 6, p. 1707. doi: 10.1007/s11771-021-4728-4
|
[16] |
S. Dhodapkar, P. Solt, and G. Klinzing, Understanding bends in pneumatic conveying systems, Chem. Eng., 116(2009), p. 53.
|
[17] |
S.S. Rajahram, T.J. Harvey, and R.J.K. Wood, Erosion–corrosion resistance of engineering materials in various test conditions, Wear, 267(2009), No. 1-4, p. 244. doi: 10.1016/j.wear.2009.01.052
|
[18] |
Y.F. Liu, Y.L. Zhao, and J. Yao, Synergistic erosion-corrosion behavior of X80 pipeline steel at various impingement angles in two-phase flow impingement, Wear, 466-467(2021), art. No. 203572. doi: 10.1016/j.wear.2020.203572
|
[19] |
H. Zhou, Q.F. Ji, W. Liu, H.Y. Ma, Y. Lei, and K.Q. Zhu, Experimental study on erosion-corrosion behavior of liquid–solid swirling flow in pipeline, Mater. Des., 214(2022), art. No. 110376. doi: 10.1016/j.matdes.2021.110376
|
[20] |
J.H. Wang, T.F. Zhang, and S.G. Wang, Heterogeneous ice slurry flow and concentration distribution in horizontal pipes, Int. J. Heat Fluid Flow, 44(2013), p. 425. doi: 10.1016/j.ijheatfluidflow.2013.07.012
|
[21] |
H. Zhang, Y.Q. Tan, D.M. Yang, et al., Numerical investigation of the location of maximum erosive wear damage in elbow: Effect of slurry velocity, bend orientation and angle of elbow, Powder Technol., 217(2012), p. 467. doi: 10.1016/j.powtec.2011.11.003
|
[22] |
Y.Q. Tan, H. Zhang, D.M. Yang, S.Q. Jiang, J.H. Song, and Y. Sheng, Numerical simulation of concrete pumping process and investigation of wear mechanism of the piping wall, Tribol. Int., 46(2012), No. 1, p. 137. doi: 10.1016/j.triboint.2011.06.005
|
[23] |
B.Q. Wu, X.D. Wang, X.X. Liu, G.G. Xu, and S.B. Zhu, Numerical simulation of erosion and fatigue failure the coal gangue paste filling caused to pumping pipes, Eng. Fail. Anal., 134(2022), art. No. 106081. doi: 10.1016/j.engfailanal.2022.106081
|
[24] |
V. Kannojiya, M. Deshwal, and D. Deshwal, Numerical analysis of solid particle erosion in pipe elbow, Mater. Today Proc., 5(2018), No. 2, p. 5021. doi: 10.1016/j.matpr.2017.12.080
|
[25] |
Q.C. Wang, Q.Y. Huang, N.R. Wang, et al., An experimental and numerical study of slurry erosion behavior in a horizontal elbow and elbows in series, Eng. Fail. Anal., 130(2021), art. No. 105779. doi: 10.1016/j.engfailanal.2021.105779
|
[26] |
M.M. Zhou, S.B. Kuang, F. Xiao, K. Luo, and A.B. Yu, CFD-DEM analysis of hydraulic conveying bends: Interaction between pipe orientation and flow regime, Powder Technol., 392(2021), p. 619. doi: 10.1016/j.powtec.2021.07.052
|
[27] |
M. Parsi, M. Agrawal, V. Srinivasan, et al., CFD simulation of sand particle erosion in gas-dominant multiphase flow, J. Nat. Gas Sci. Eng., 27(2015), p. 706. doi: 10.1016/j.jngse.2015.09.003
|
[28] |
J.X. Zhang, J.A. Kang, J.C. Fan, and J.C. Gao, Study on erosion wear of fracturing pipeline under the action of multiphase flow in oil & gas industry, J. Nat. Gas Sci. Eng., 32(2016), p. 334. doi: 10.1016/j.jngse.2016.04.056
|
[29] |
M. Parsi, R.E. Vieira, N. Kesana, B.S. McLaury, and S.A. Shirazi, Ultrasonic measurements of sand particle erosion in gas dominant multiphase churn flow in vertical pipes, Wear, 328-329(2015), p. 401. doi: 10.1016/j.wear.2015.03.013
|
[30] |
S.N. Shah and S. Jain, Coiled tubing erosion during hydraulic fracturing slurry flow, Wear, 264(2008), No. 3-4, p. 279. doi: 10.1016/j.wear.2007.03.016
|
[31] |
N. Lin, H.Q. Lan, Y.G. Xu, S.H. Dong, and G. Barber, Effect of the gas-solid two-phase flow velocity on elbow erosion, J. Nat. Gas Sci. Eng., 26(2015), p. 581. doi: 10.1016/j.jngse.2015.06.054
|
[32] |
Q.B. Nguyen, V.B. Nguyen, C.Y.H. Lim, et al., Effect of impact angle and testing time on erosion of stainless steel at higher velocities, Wear, 321(2014), p. 87. doi: 10.1016/j.wear.2014.10.010
|
[33] |
J.K. Chen, Y.S. Wang, X.F. Li, R.Y. He, S. Han, and Y.L. Chen, Erosion prediction of liquid-particle two-phase flow in pipeline elbows via CFD–DEM coupling method, Powder Technol., 275(2015), p. 182. doi: 10.1016/j.powtec.2014.12.057
|
[34] |
M. Tiberga, A. Hennink, J.L. Kloosterman, and D. Lathouwers, A high-order discontinuous Galerkin solver for the incompressible RANS equations coupled to the k−ϵ, Comput. Fluids, 212(2020), art. No. 104710.
|
[35] |
B.E. Launder and B.I. Sharma, Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc, Lett. Heat Mass Transf., 1(1974), No. 2, p. 131. doi: 10.1016/0094-4548(74)90150-7
|
[36] |
Y. Sun, M.L. Liu, Y. Xiao, and Y.F. Chen, A novel molecular communication inspired detection method for the evolution of atherosclerosis, Comput. Meth. Programs Biomed., 219(2022), art. No. 106756. doi: 10.1016/j.cmpb.2022.106756
|
[37] |
M. Rafiee, M.J.H. Simmons, A. Ingram, and E.H. Stitt, Development of positron emission particle tracking for studying laminar mixing in Kenics static mixer, Chem. Eng. Res. Des., 91(2013), No. 11, p. 2106. doi: 10.1016/j.cherd.2013.05.022
|
[38] |
A. Mansouri, Development of Erosion Equations for Slurry Flows, Advis. Board Rep. Erosion/Corrosion Res. Center, Univ. Tulsa, Tulsa, 2015, p. 48.
|
[39] |
L. Zeng, G.A. Zhang, and X.P. Guo, Erosion-corrosion at different locations of X65 carbon steel elbow, Corros. Sci., 85(2014), p. 318. doi: 10.1016/j.corsci.2014.04.045
|
[40] |
M.H. Zolfagharnasab, M. Salimi, H. Zolfagharnasab, H. Alimoradi, M. Shams, and C. Aghanajafi, A novel numerical investigation of erosion wear over various 90-degree elbow duct sections, Powder Technol., 380(2021), p. 1. doi: 10.1016/j.powtec.2020.11.059
|
[41] |
M.A. Al-Bukhaiti, S.M. Ahmed, F.M.F. Badran, and K.M. Emara, Effect of impingement angle on slurry erosion behaviour and mechanisms of 1017 steel and high-chromium white cast iron, Wear, 262(2007), No. 9-10, p. 1187. doi: 10.1016/j.wear.2006.11.018
|
[42] |
R.E. Vieira, A. Mansouri, B.S. McLaury, and S.A. Shirazi, Experimental and computational study of erosion in elbows due to sand particles in air flow, Powder Technol., 288(2016), p. 339. doi: 10.1016/j.powtec.2015.11.028
|
[43] |
X.H. Chen, B.S. McLaury, and S.A. Shirazi, Numerical and experimental investigation of the relative erosion severity between plugged Tees and elbows in dilute gas/solid two-phase flow, Wear, 261(2006), No. 7-8, p. 715. doi: 10.1016/j.wear.2006.01.022
|
[44] |
D.J. Blanchard, P. Griffith, and E. Rabinowicz, Erosion of a pipe bend by solid particles entrained in water, J. Manuf. Sci. Eng., 106(1984), No. 3, p. 213. doi: 10.1115/1.3185935
|
[45] |
P.C. Kang, Q.Q. Zhao, S.Q. Guo, et al., Optimisation of the spark plasma sintering process for high volume fraction SiCp/Al composites by orthogonal experimental design, Ceram. Int., 47(2021), No. 3, p. 3816. doi: 10.1016/j.ceramint.2020.09.240
|
[46] |
Q. Li, Z.Y. Peng, W.B. Jiang, et al., Optimization of Ti−Zr−Cr−Fe alloys for 45 MPa metal hydride hydrogen compressors using orthogonal analysis, J. Alloys Compd., 889(2021), art. No. 161629. doi: 10.1016/j.jallcom.2021.161629
|