Cite this article as: |
Jingshu Yuan, Yao Zhang, Xiaoyan Zhang, Junjie Zhang, and Shen’gen Zhang, N-doped graphene quantum dot-decorated N-TiO2/P-doped porous hollow g-C3N4 nanotube composite photocatalysts for antibiotic photodegradation and H2 production, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 165-178. https://doi.org/10.1007/s12613-023-2678-6 |
Shen’gen Zhang E-mail: zhangshengen@mater.ustb.edu.cn
Supplementary Information-10.1007s12613-023-2678-6.doc |
[1] |
S.J. Wang, F.T. He, X.L. Zhao, et al., Phosphorous doped carbon nitride nanobelts for photodegradation of emerging contaminants and hydrogen evolution, Appl. Catal. B: Environ., 257(2019), art. No. 117931. doi: 10.1016/j.apcatb.2019.117931
|
[2] |
H.H. Wang, W.X. Liu, J. Ma, et al., Design of (GO/TiO2)N one-dimensional photonic crystal photocatalysts with improved photocatalytic activity for tetracycline degradation, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 830. doi: 10.1007/s12613-019-1923-5
|
[3] |
J. Li, M. Zhang, Q.Y. Li, and J.J. Yang, Enhanced visible light activity on direct contact Z-scheme g-C3N4-TiO2 photocatalyst, Appl. Surf. Sci., 391(2017), p. 184. doi: 10.1016/j.apsusc.2016.06.145
|
[4] |
X.H. Jiang, Y.N. Duan, Y. Tian, et al., Facile one-pot hydrothermal method to prepare Sn(II) and N co-doped TiO2 photocatalyst for water splitting under visible light irradiation, Rare Met., 41(2022), No. 2, p. 406. doi: 10.1007/s12598-021-01810-4
|
[5] |
X.F. Chen, J. Wei, R.J. Hou, et al., Growth of g-C3N4 on mesoporous TiO2 spheres with high photocatalytic activity under visible light irradiation, Appl. Catal. B: Environ., 188(2016), p. 342. doi: 10.1016/j.apcatb.2016.02.012
|
[6] |
Y.C. Nie, F. Yu, L.C. Wang, et al., Photocatalytic degradation of organic pollutants coupled with simultaneous photocatalytic H2 evolution over graphene quantum dots/Mn-N-TiO2/g-C3N4 composite catalysts: Performance and mechanism, Appl. Catal. B: Environ., 227(2018), p. 312. doi: 10.1016/j.apcatb.2018.01.033
|
[7] |
Y.Y. Qin, Y.C. Guo, Z.Q. Liang, et al., Au nanorods decorated TiO2 nanobelts with enhanced full solar spectrum photocatalytic antibacterial activity and the sterilization file cabinet application, Chin. Chem. Lett., 32(2021), No. 4, p. 1523. doi: 10.1016/j.cclet.2020.10.020
|
[8] |
L. Xu, X. Bai, L.K. Guo, S.J. Yang, P.K. Jin, and L. Yang, Facial fabrication of carbon quantum dots (CDs)-modified N-TiO2−x nanocomposite for the efficient photoreduction of Cr(VI) under visible light, Chem. Eng. J., 357(2019), p. 473. doi: 10.1016/j.cej.2018.09.172
|
[9] |
S. Dong, S.H. Chen, F.Y. He, J.C. Li, H. Li, and K.Z. Xu, Construction of a novel N-doped oxygen vacancy-rich TiO2 N-TiO2−X/g-C3N4 S-scheme heterostructure for visible light driven photocatalytic degradation of 2,4-dinitrophenylhydrazine, J. Alloys Compd., 908(2022), art. No. 164586. doi: 10.1016/j.jallcom.2022.164586
|
[10] |
L. Yang, X. Bai, J. Shi, X.Y. Du, L. Xu, and P.K. Jin, Quasi-full-visible-light absorption by D35-TiO2/g-C3N4 for synergistic persulfate activation towards efficient photodegradation of micropollutants, Appl. Catal. B: Environ., 256(2019), art. No. 117759. doi: 10.1016/j.apcatb.2019.117759
|
[11] |
B. Fang, Z.P. Xing, D.D. Sun, Z.Z. Li, and W. Zhou, Hollow semiconductor photocatalysts for solar energy conversion, Adv. Powder Mater., 1(2022), No. 2, art. No. 100021. doi: 10.1016/j.apmate.2021.11.008
|
[12] |
Y.X. Wang, L. Rao, P.F. Wang, Z.Y. Shi, and L.X. Zhang, Photocatalytic activity of N-TiO2/O-doped N vacancy g-C3N4 and the intermediates toxicity evaluation under tetracycline hydrochloride and Cr(VI) coexistence environment, Appl. Catal. B: Environ., 262(2020), art. No. 118308. doi: 10.1016/j.apcatb.2019.118308
|
[13] |
L.Q. Zhang, X. He, X.W. Xu, et al., Highly active TiO2/g-C3N4/G photocatalyst with extended spectral response towards selective reduction of nitrobenzene, Appl. Catal. B: Environ., 203(2017), p. 1. doi: 10.1016/j.apcatb.2016.10.003
|
[14] |
R.Y. Zhong, Z.S. Zhang, H.Q. Yi, et al., Covalently bonded 2D/2D O-g-C3N4/TiO2 heterojunction for enhanced visible-light photocatalytic hydrogen evolution, Appl. Catal. B: Environ., 237(2018), p. 1130. doi: 10.1016/j.apcatb.2017.12.066
|
[15] |
Y. Zhang, J.S. Yuan, L. Zhao, et al., Boosting exciton dissociation and charge transfer in P-doped 2D porous g-C3N4 for enhanced H2 production and molecular oxygen activation, Ceram. Int., 48(2022), No. 3, p. 4031. doi: 10.1016/j.ceramint.2021.10.193
|
[16] |
Y.C. Deng, L. Tang, G.M. Zeng, et al., Insight into highly efficient simultaneous photocatalytic removal of Cr(VI) and 2,4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media: Performance and reaction mechanism, Appl. Catal. B: Environ., 203(2017), p. 343. doi: 10.1016/j.apcatb.2016.10.046
|
[17] |
N. Tian, K. Xiao, Y.H. Zhang, et al., Reactive sites rich porous tubular yolk-shell g-C3N4 via precursor recrystallization mediated microstructure engineering for photoreduction, Appl. Catal. B: Environ., 253(2019), p. 196. doi: 10.1016/j.apcatb.2019.04.036
|
[18] |
Y.H. Li, M.L. Gu, T. Shi, et al., Carbon vacancy in C3N4 nanotube: Electronic structure, photocatalysis mechanism and highly enhanced activity, Appl. Catal. B: Environ., 262(2020), art. No. 118281. doi: 10.1016/j.apcatb.2019.118281
|
[19] |
Y. Zhang, J.S. Yuan, Y.J. Ding, B.L. Zhang, S.G. Zhang, and B. Liu, Metal-free N-GQDs/P-g-C3N4 photocatalyst with broad-spectrum response: Enhanced exciton dissociation and charge migration for promoting H2 evolution and tetracycline degradation, Sep. Purif. Technol., 304(2023), art. No. 122297. doi: 10.1016/j.seppur.2022.122297
|
[20] |
Y.H. Su, G.L. Liu, C.P. Zeng, Y.B. Lu, H.P. Luo, and R.D. Zhang, Carbon quantum dots-decorated TiO2/g-C3N4 film electrode as a photoanode with improved photoelectrocatalytic performance for 1,4-dioxane degradation, Chemosphere, 251(2020), art. No. 126381. doi: 10.1016/j.chemosphere.2020.126381
|
[21] |
T. Chen, L. Zhong, Z. Yang, et al., Enhanced visible-light photocatalytic activity of g-C3N4/nitrogen-doped graphene quantum dots/TiO2 ternary heterojunctions for ciprofloxacin degradation with narrow band gap and high charge carrier mobility, Chem. Res. Chin. Univ., 36(2020), No. 6, p. 1083. doi: 10.1007/s40242-020-0301-1
|
[22] |
Y.C. Deng, L. Tang, C.Y. Feng, et al., Construction of plasmonic Ag and nitrogen-doped graphene quantum dots codecorated ultrathin graphitic carbon nitride nanosheet composites with enhanced photocatalytic activity: Full-spectrum response ability and mechanism insight, ACS Appl. Mater. Interfaces, 9(2017), No. 49, p. 42816. doi: 10.1021/acsami.7b14541
|
[23] |
Y. Zhang, J.S. Yuan, Y.J. Ding, B. Liu, L. Zhao, and S.G. Zhang, Research progress on g-C3N4-based photocatalysts for organic pollutants degradation in wastewater: From exciton and carrier perspectives, Ceram. Int., 47(2021), No. 22, p. 31005. doi: 10.1016/j.ceramint.2021.08.063
|
[24] |
W.J. Wang, Z.T. Zeng, G.M. Zeng, et al., Sulfur doped carbon quantum dots loaded hollow tubular g-C3N4 as novel photocatalyst for destruction of Escherichia coli and tetracycline degradation under visible light, Chem. Eng. J., 378(2019), art. No. 122132. doi: 10.1016/j.cej.2019.122132
|
[25] |
Z. Mo, X.W. Zhu, Z.F. Jiang, et al., Porous nitrogen-rich g-C3N4 nanotubes for efficient photocatalytic CO2 reduction, Appl. Catal. B: Environ., 256(2019), art. No. 117854. doi: 10.1016/j.apcatb.2019.117854
|
[26] |
N. Fajrina and M. Tahir, 2D-montmorillonite-dispersed g-C3N4/TiO2 2D/0Dnanocomposite for enhanced photo-induced H2 evolution from glycerol–water mixture, Appl. Surf. Sci., 471(2019), p. 1053. doi: 10.1016/j.apsusc.2018.12.076
|
[27] |
M.H. Zhang, N. Han, Y.W. Fei, et al., TiO2/g-C3N4 photocatalyst for the purification of potassium butyl xanthate in mineral processing wastewater, J. Environ. Manag., 297(2021), art. No. 113311. doi: 10.1016/j.jenvman.2021.113311
|
[28] |
Z. Lu, L. Zeng, W.L. Song, Z.Y. Qin, D.W. Zeng, and C.S. Xie, In situ synthesis of C–TiO2/g-C3N4 heterojunction nanocomposite as highly visible light active photocatalyst originated from effective interfacial charge transfer, Appl. Catal. B: Environ., 202(2017), p. 489. doi: 10.1016/j.apcatb.2016.09.052
|
[29] |
L. Chen, X.L. Zhao, X.G. Duan, et al., Graphitic carbon nitride microtubes for efficient photocatalytic overall water splitting: The morphology derived electrical field enhancement, ACS Sustainable Chem. Eng., 8(2020), No. 38, p. 14386. doi: 10.1021/acssuschemeng.0c04097
|
[30] |
S.E. Guo, Z.P. Deng, M.X. Li, et al., Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution, Angew. Chem. Int. Ed., 55(2016), No. 5, p. 1830. doi: 10.1002/anie.201508505
|
[31] |
Y.Y. Jiao, Y.K. Li, J.S. Wang, Z.H. He, and Z.J. Li, Double Z-scheme photocatalyst C3N4 nanotube/N-doped carbon dots/Ni2P with enhanced visible-light photocatalytic activity for hydrogen generation, Appl. Surf. Sci., 534(2020), art. No. 147603. doi: 10.1016/j.apsusc.2020.147603
|
[32] |
G.H. Zhang, T.Y. Zhang, B. Li, et al., An ingenious strategy of preparing TiO2/g-C3N4 heterojunction photocatalyst: In situ growth of TiO2 nanocrystals on g-C3N4 nanosheets via impregnation-calcination method, Appl. Surf. Sci., 433(2018), p. 963. doi: 10.1016/j.apsusc.2017.10.135
|
[33] |
G.D. Jiang, K. Geng, Y. Wu, Y.H. Han, and X.D. Shen, High photocatalytic performance of ruthenium complexes sensitizing g-C3N4/TiO2 hybrid in visible light irradiation, Appl. Catal. B: Environ., 227(2018), p. 366. doi: 10.1016/j.apcatb.2018.01.034
|
[34] |
G.M. Jiang, J.W. Cao, M. Chen, X.M. Zhang, and F. Dong, Photocatalytic NO oxidation on N-doped TiO2/g-C3N4 heterojunction: Enhanced efficiency, mechanism and reaction pathway, Appl. Surf. Sci., 458(2018), p. 77. doi: 10.1016/j.apsusc.2018.07.087
|
[35] |
Y. Zhao, S.P. Xu, X. Sun, X. Xu, and B.Y. Gao, Unique bar-like sulfur-doped C3N4/TiO2 nanocomposite: Excellent visible light driven photocatalytic activity and mechanism study, Appl. Surf. Sci., 436(2018), p. 873. doi: 10.1016/j.apsusc.2017.12.061
|
[36] |
H.Y. Niu, W.J. Zhao, H.Z. Lv, Y.L. Yang, and Y.Q. Cai, Accurate design of hollow/tubular porous g-C3N4 from melamine-cyanuric acid supramolecular prepared with mechanochemical method, Chem. Eng. J., 411(2021), art. No. 128400. doi: 10.1016/j.cej.2020.128400
|
[37] |
K. Wei, K.X. Li, L.S. Yan, et al., One-step fabrication of g-C3N4 nanosheets/TiO2 hollow microspheres heterojunctions with atomic level hybridization and their application in the multi-component synergistic photocatalytic systems, Appl. Catal. B: Environ., 222(2018), p. 88. doi: 10.1016/j.apcatb.2017.09.070
|
[38] |
X.H. Jiang, Q.J. Xing, X.B. Luo, et al., Simultaneous photoreduction of Uranium(VI) and photooxidation of Arsenic(III) in aqueous solution over g-C3N4/TiO2 heterostructured catalysts under simulated sunlight irradiation, Appl. Catal. B: Environ., 228(2018), p. 29. doi: 10.1016/j.apcatb.2018.01.062
|
[39] |
M.N. Huang, J.H. Yu, Q. Hu, et al., Preparation and enhanced photocatalytic activity of carbon nitride/titania (001 vs 101 facets)/reduced graphene oxide (g-C3N4/TiO2/rGO) hybrids under visible light, Appl. Surf. Sci., 389(2016), p. 1084. doi: 10.1016/j.apsusc.2016.07.180
|
[40] |
Y.G. Tan, Z. Shu, J. Zhou, T.T. Li, W.B. Wang, and Z.L. Zhao, One-step synthesis of nanostructured g-C3N4/TiO2 composite for highly enhanced visible-light photocatalytic H2 evolution, Appl. Catal. B: Environ., 230(2018), p. 260. doi: 10.1016/j.apcatb.2018.02.056
|
[41] |
X.Q. Wang, F. Wang, C. Bo, et al., Promotion of phenol photodecomposition and the corresponding decomposition mechanism over g-C3N4/TiO2 nanocomposites, Appl. Surf. Sci., 453(2018), p. 320. doi: 10.1016/j.apsusc.2018.05.082
|
[42] |
D. Yang, X.Y. Zhao, Y. Chen, et al., Synthesis of g-C3N4 nanosheet/TiO2 heterojunctions inspired by bioadhesion and biomineralization mechanism, Ind. Eng. Chem. Res., 58(2019), No. 14, p. 5516. doi: 10.1021/acs.iecr.9b00184
|
[43] |
F.X. Li, X.D. Xiao, C. Zhao, et al., TiO2-on-C3N4 double-shell microtubes: In-situ fabricated heterostructures toward enhanced photocatalytic hydrogen evolution, J. Colloid Interface Sci., 572(2020), p. 22. doi: 10.1016/j.jcis.2020.03.071
|
[44] |
Y.Y. Yin, Q. Liu, D. Jiang, et al., Atmospheric pressure synthesis of nitrogen doped graphene quantum dots for fabrication of BiOBr nanohybrids with enhanced visible-light photoactivity and photostability, Carbon, 96(2016), p. 1157. doi: 10.1016/j.carbon.2015.10.068
|
[45] |
L.N. Chi, Y.J. Qian, J.Q. Guo, X.Z. Wang, H. Arandiyan, and Z. Jiang, Novel g-C3N4/TiO2/PAA/PTFE ultrafiltration membrane enabling enhanced antifouling and exceptional visible-light photocatalytic self-cleaning, Catal. Today, 335(2019), p. 527. doi: 10.1016/j.cattod.2019.02.027
|
[46] |
K.L. Huang, C.H. Li, X.L. Zhang, et al., TiO2 nanorod arrays decorated by nitrogen-doped carbon and g-C3N4 with enhanced photoelectrocatalytic activity, Appl. Surf. Sci., 518(2020), art. No. 146219. doi: 10.1016/j.apsusc.2020.146219
|
[47] |
J. Ma, W. Zhou, X. Tan, and T. Yu, Potassium ions intercalated into g-C3N4-modified TiO2 nanobelts for the enhancement of photocatalytic hydrogen evolution activity under visible-light irradiation, Nanotechnology, 29(2018), No. 21, art. No. 215706. doi: 10.1088/1361-6528/aab564
|
[48] |
C.X. Li, Z.R. Lou, Y.C. Yang, et al., Hollowsphere nanoheterojunction of g-C3N4@TiO2 with high visible light photocatalytic property, Langmuir, 35(2019), No. 3, p. 779. doi: 10.1021/acs.langmuir.8b03867
|
[49] |
J. Ma, X. Tan, T. Yu, and X.L. Li, Fabrication of g-C3N4/TiO2 hierarchical spheres with reactive{001}TiO2 crystal facets and its visible-light photocatalytic activity, Int. J. Hydrog. Energy, 41(2016), No. 6, p. 3877. doi: 10.1016/j.ijhydene.2015.12.191
|
[50] |
Z.B. Wu, Y.S. Liang, X.Z. Yuan, et al., MXene Ti3C2 derived Z-scheme photocatalyst of graphene layers anchored TiO2/g-C3N4 for visible light photocatalytic degradation of refractory organic pollutants, Chem. Eng. J., 394(2020), art. No. 124921. doi: 10.1016/j.cej.2020.124921
|
[51] |
Q.H. Li, M. Dong, R. Li, et al., Enhancement of Cr(VI) removal efficiency via adsorption/photocatalysis synergy using electrospun chitosan/g-C3N4/TiO2 nanofibers, Carbohydr. Polym., 253(2021), art. No. 117200. doi: 10.1016/j.carbpol.2020.117200
|
[52] |
X. Han, L. An, Y. Hu, et al., Ti3C2 MXene-derived carbon-doped TiO2 coupled with g-C3N4 as the visible-light photocatalysts for photocatalytic H2 generation, Appl. Catal. B: Environ., 265(2020), art. No. 118539. doi: 10.1016/j.apcatb.2019.118539
|
[53] |
J.Q. Pan, Z.J. Dong, B.B. Wang, et al., The enhancement of photocatalytic hydrogen production via Ti3+ self-doping black TiO2/g-C3N4 hollow core-shell nano-heterojunction, Appl. Catal. B: Environ., 242(2019), p. 92. doi: 10.1016/j.apcatb.2018.09.079
|
[54] |
B. Zhou, H.T. Hong, H.F. Zhang, S.S. Yu, and H.W. Tian, Heterostructured Ag/g-C3N4/TiO2 with enhanced visible light photocatalytic performances, J. Chem. Technol. Biotechnol., 94(2019), No. 12, p. 3806. doi: 10.1002/jctb.6105
|
[55] |
Y.J. Zou, J.W. Shi, D.D. Ma, Z.Y. Fan, C.M. Niu, and L.Z. Wang, Fabrication of g-C3N4/Au/C-TiO2 hollow structures as visible-light-driven Z-scheme photocatalysts with enhanced photocatalytic H2 evolution, ChemCatChem, 9(2017), No. 19, p. 3752. doi: 10.1002/cctc.201700542
|
[56] |
L.M. Hu, J.T. Yan, C.L. Wang, B. Chai, and J.F. Li, Direct electrospinning method for the construction of Z-scheme TiO2/g-C3N4/RGO ternary heterojunction photocatalysts with remarkably ameliorated photocatalytic performance, Chin. J. Catal., 40(2019), No. 3, p. 458. doi: 10.1016/S1872-2067(18)63181-X
|
[57] |
X.W. Liu, W.Q. Li, R. Hu, et al., Synergistic degradation of acid orange 7 dye by using non-thermal plasma and g-C3N4/TiO2: Performance, degradation pathways and catalytic mechanism, Chemosphere, 249(2020), art. No. 126093. doi: 10.1016/j.chemosphere.2020.126093
|
[58] |
D. Liang, Y.L. Huang, F. Wu, et al., In situ synthesis of g-C3N4/TiO2 with{001}and{101}facets coexposed for water remediation, Appl. Surf. Sci., 487(2019), p. 322. doi: 10.1016/j.apsusc.2019.05.088
|
[59] |
X.J. Wang, W.Y. Yang, F.T. Li, Y.B. Xue, R.H. Liu, and Y.J. Hao, In situ microwave-assisted synthesis of porous N-TiO2/g-C3N4 heterojunctions with enhanced visible-light photocatalytic properties, Ind. Eng. Chem. Res., 52(2013), No. 48, p. 17140. doi: 10.1021/ie402820v
|
[60] |
X.W. Liu, J. Chen, L.F. Yang, et al., 2D/2D g-C3N4/TiO2 with exposed (001) facets Z-Scheme composites accelerating separation of interfacial charge and visible photocatalytic degradation of Rhodamine B, J. Phys. Chem. Solids, 160(2022), art. No. 110339. doi: 10.1016/j.jpcs.2021.110339
|
[61] |
S. Zhou, Y. Liu, J.M. Li, et al., Facile in situ synthesis of graphitic carbon nitride (g-C3N4)-N-TiO2 heterojunction as an efficient photocatalyst for the selective photoreduction of CO2 to CO, Appl. Catal. B: Environ., 158-159(2014), p. 20. doi: 10.1016/j.apcatb.2014.03.037
|
[62] |
M. Sathish, B. Viswanathan, R.P. Viswanath, and C.S. Gopinath, Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst, Chem. Mater., 17(2005), No. 25, p. 6349. doi: 10.1021/cm052047v
|
[63] |
L. Zhou, J.R. Feng, B.C. Qiu, et al., Ultrathin g-C3N4 nanosheet with hierarchical pores and desirable energy band for highly efficient H2O2 production, Appl. Catal. B: Environ., 267(2020), art. No. 118396. doi: 10.1016/j.apcatb.2019.118396
|
[64] |
C. Yang, X. Liu, J. Liu, et al., Long-lasting photocatalytic activity of trace phosphorus-doped g-C3N4/SMSO and its application in antibacterial ceramics, Ecotoxicol. Environ. Saf., 242(2022), art. No. 113951. doi: 10.1016/j.ecoenv.2022.113951
|
[65] |
H.J. Liang, M.C. Yu, J.Y. Guo, et al., A novel vacancy-strengthened Z-scheme g-C3N4/Bp/MoS2 composite for super-efficient visible-light photocatalytic degradation of ciprofloxacin, Sep. Purif. Technol., 272(2021), art. No. 118891. doi: 10.1016/j.seppur.2021.118891
|
[66] |
M.X. Tan, Y. Ma, C.Y. Yu, et al., Boosting photocatalytic hydrogen production via interfacial engineering on 2D ultrathin Z-scheme ZnIn2S4/g-C3N4 heterojunction, Adv. Funct. Mater., 32(2022), No. 14, art. No. 2111740. doi: 10.1002/adfm.202111740
|
[67] |
Y.T. Yu, W.C. Xu, J.Z. Fang, et al., Soft-template assisted construction of superstructure TiO2/SiO2/g-C3N4 hybrid as efficient visible-light photocatalysts to degrade berberine in seawater via an adsorption-photocatalysis synergy and mechanism insight, Appl. Catal. B: Environ., 268(2020), art. No. 118751. doi: 10.1016/j.apcatb.2020.118751
|
[68] |
X.N. Hu, Y. Zhang, B.J. Wang, H.J. Li, and W.B. Dong, Novel g-C3N4/BiOClxI1−x nanosheets with rich oxygen vacancies for enhanced photocatalytic degradation of organic contaminants under visible and simulated solar light, Appl. Catal. B: Environ., 256(2019), art. No. 117789. doi: 10.1016/j.apcatb.2019.117789
|
[69] |
Y.Y. Wu, X.T. Chen, J.C. Cao, et al., Photocatalytically recovering hydrogen energy from wastewater treatment using MoS2@TiO2 with sulfur/oxygen dual-defect, Appl. Catal. B: Environ., 303(2022), art. No. 120878. doi: 10.1016/j.apcatb.2021.120878
|
[70] |
J.S. Yuan, Y. Zhang, X.Y. Zhang, L. Zhao, H.L. Shen, and S.G. Zhang, Template-free synthesis of core–shell Fe3O4@MoS2@mesoporous TiO2 magnetic photocatalyst for wastewater treatment, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 177. doi: 10.1007/s12613-022-2473-9
|
[71] |
C.J. Wang, Y.L. Zhao, H. Xu, et al., Efficient Z-scheme photocatalysts of ultrathin g-C3N4-wrapped Au/TiO2-nanocrystals for enhanced visible-light-driven conversion of CO2 with H2O, Appl. Catal. B: Environ., 263(2020), art. No. 118314. doi: 10.1016/j.apcatb.2019.118314
|
[72] |
C. Zhao, Y. Li, H.Y. Chu, et al., Construction of direct Z-scheme Bi5O7I/UiO-66-NH2 heterojunction photocatalysts for enhanced degradation of ciprofloxacin: Mechanism insight, pathway analysis and toxicity evaluation, J. Hazard. Mater., 419(2021), art. No. 126466. doi: 10.1016/j.jhazmat.2021.126466
|
[73] |
Z.F. Hu, D. Shi, G.H. Wang, et al., Carbon dots incorporated in hierarchical macro/mesoporous g-C3N4/TiO2 as an all-solid-state Z-scheme heterojunction for enhancement of photocatalytic H2 evolution under visible light, Appl. Surf. Sci., 601(2022), art. No. 154167. doi: 10.1016/j.apsusc.2022.154167
|
[74] |
D.T. Zhou, B.B. Yu, Q.L. Chen, et al., Improved visible light photocatalytic activity on Z-scheme g-C3N4 decorated TiO2 nanotube arrays by a simple impregnation method, Mater. Res. Bull., 124(2020), art. No. 110757. doi: 10.1016/j.materresbull.2019.110757
|
[75] |
A. Kumar, M. Khan, J.H. He, and I.M.C. Lo, Visible-light-driven magnetically recyclable terephthalic acid functionalized g-C3N4/TiO2 heterojunction nanophotocatalyst for enhanced degradation of PPCPs, Appl. Catal. B: Environ., 270(2020), art. No. 118898. doi: 10.1016/j.apcatb.2020.118898
|
[76] |
X. Hu, X.J. Hu, Q.Q. Peng, et al., Mechanisms underlying the photocatalytic degradation pathway of ciprofloxacin with heterogeneous TiO2, Chem. Eng. J., 380(2020), art. No. 122366. doi: 10.1016/j.cej.2019.122366
|
[77] |
D.E. Lee, S. Moru, W.K. Jo, and S. Tonda, Porous g-C3N4-encapsulated TiO2 hollow sphere as a high-performance Z-scheme hybrid for solar-induced photocatalytic abatement of environmentally toxic pharmaceuticals, J. Mater. Sci. Technol., 82(2021), p. 21. doi: 10.1016/j.jmst.2020.10.084
|
[78] |
W.Q. Li, S.Q. Li, Y. Tang, et al., Highly efficient activation of peroxymonosulfate by cobalt sulfide hollow nanospheres for fast ciprofloxacin degradation, J. Hazard. Mater., 389(2020), art. No. 121856. doi: 10.1016/j.jhazmat.2019.121856
|
[79] |
B.S. Li, S.Y. Liu, C. Lai, et al., Unravelling the interfacial charge migration pathway at atomic level in 2D/2D interfacial Schottky heterojunction for visible-light-driven molecular oxygen activation, Appl. Catal. B: Environ., 266(2020), art. No. 118650. doi: 10.1016/j.apcatb.2020.118650
|
[80] |
Y.Q. Lu, C.S. Ding, J. Guo, et al., Highly efficient photodegradation of ciprofloxacin by dual Z-scheme Bi2MoO6/GQDs/TiO2 heterojunction photocatalysts: Mechanism analysis and pathway exploration, J. Alloys Compd., 924(2022), art. No. 166533. doi: 10.1016/j.jallcom.2022.166533
|