Jingchun Sun, Jindiao Guan, Suqing Zhou, Jiewei Ouyang, Nan Zhou, Chunxia Ding,  and Mei’e Zhong, Improving the electrocatalytic activity of Fe, N co-doped biochar for polysulfide by regulation of N–C and Fe–N–C electronic configurations, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2421-2431. https://doi.org/10.1007/s12613-023-2683-9
Cite this article as:
Jingchun Sun, Jindiao Guan, Suqing Zhou, Jiewei Ouyang, Nan Zhou, Chunxia Ding,  and Mei’e Zhong, Improving the electrocatalytic activity of Fe, N co-doped biochar for polysulfide by regulation of N–C and Fe–N–C electronic configurations, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2421-2431. https://doi.org/10.1007/s12613-023-2683-9
Research Article

Improving the electrocatalytic activity of Fe, N co-doped biochar for polysulfide by regulation of N–C and Fe–N–C electronic configurations

+ Author Affiliations
  • Corresponding author:

    Mei’e Zhong    E-mail: zhongmeie@hunau.net

  • Received: 16 February 2023Revised: 19 April 2023Accepted: 22 May 2023Available online: 31 May 2023
  • The conversion of agricultural residual biomass into biochar as a sulfur host material for Li–S batteries is a promising approach to alleviate the greenhouse effect and realize waste resource reutilization. However, the large-scale application of pristine biochar is hindered by its low electrical conductivity and limited electrocatalytic sites. This paper addressed these challenges via the construction of Fe–N co-doped biochar (Fe–NOPC) through the copyrolysis of sesame seeds shell and ferric sodium ethylenediaminetetraacetic acid (NaFeEDTA). During the synthesis process, NaFeEDTA was used as an extra carbon resource to regulate the chemical environment of N doping, which resulted in the production of high contents of graphitic, pyridinic, and pyrrolic N and Fe–Nx bonds. When the resulting Fe–NOPC was used as a sulfur host, the pyridinic and pyrrolic N would adjust the surface electron structure of biochar to accelerate the electron/ion transport, and the electropositive graphitic N could be combined with sulfur-related species via electrostatic attraction. Fe–Nx could also promote the redox reaction of lithium polysulfides due to the strong Li–N and S–Fe bonds. Benefiting from these advantages, the resultant Fe–NOPC/S cathode with a sulfur loading of 3.8 mg·cm−2 delivered an areal capacity of 4.45 mAh·cm−2 at 0.1C and retained a capacity of 3.45 mAh·cm−2 at 1C. Thus, this cathode material holds enormous potential for achieving energy-dense Li–S batteries.
  • loading
  • Supplementary Information-10.1007s12613-023-2683-9.docx
  • [1]
    S.K. Malyan, S.S. Kumar, R.K. Fagodiya, et al., Biochar for environmental sustainability in the energy-water-agroecosystem nexus, Renewable Sustainable Energy Rev., 149(2021), art. No. 111379. doi: 10.1016/j.rser.2021.111379
    [2]
    J. Lehmann, A. Cowie, C.A. Masiello, et al., Biochar in climate change mitigation, Nat. Geosci., 14(2021), No. 12, p. 883. doi: 10.1038/s41561-021-00852-8
    [3]
    R.K. Srivastava, N.P. Shetti, K.R. Reddy, E.E. Kwon, M.N. Nadagouda, and T.M. Aminabhavi, Biomass utilization and production of biofuels from carbon neutral materials, Environ. Pollut., 276(2021), art. No. 116731. doi: 10.1016/j.envpol.2021.116731
    [4]
    S.X. Wei, Z.C. Li, Y. Sun, J.M. Zhang, Y.Y. Ge, and Z.L. Li, A comprehensive review on biomass humification: Recent advances in pathways, challenges, new applications, and perspectives, Renewable Sustainable Energy Rev., 170(2022), art. No. 112984. doi: 10.1016/j.rser.2022.112984
    [5]
    M.Y. Gao, Y.C. Xue, Y.T. Zhang, et al., Growing Co–Ni–Se nanosheets on 3D carbon frameworks as advanced dual functional electrodes for supercapacitors and sodium ion batteries, Inorg. Chem. Front., 9(2022), No. 15, p. 3933. doi: 10.1039/D2QI00695B
    [6]
    F. Lü, X.M. Lu, S.S. Li, H.A. Zhang, L.M. Shao, and P.J. He, Dozens-fold improvement of biochar redox properties by KOH activation, Chem. Eng. J., 429(2022), art. No. 132203. doi: 10.1016/j.cej.2021.132203
    [7]
    S. Bakshi, C. Banik, D.A. Laird, R. Smith, and R.C. Brown, Enhancing biochar as scaffolding for slow release of nitrogen fertilizer, ACS Sustainable Chem. Eng., 9(2021), No. 24, p. 8222. doi: 10.1021/acssuschemeng.1c02267
    [8]
    F.Z. Qin, C. Zhang, G.M. Zeng, D.L. Huang, X.F. Tan, and A.B. Duan, Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity, Renewable Sustainable Energy Rev., 157(2022), art. No. 112056. doi: 10.1016/j.rser.2021.112056
    [9]
    C. Nita, B. Zhang, J. Dentzer, and C.M. Ghimbeu, Hard carbon derived from coconut shells, walnut shells, and corn silk biomass waste exhibiting high capacity for Na-ion batteries, J. Energy Chem., 58(2021), p. 207. doi: 10.1016/j.jechem.2020.08.065
    [10]
    B. Yu, A.J. Huang, K. Srinivas, et al., Outstanding catalytic effects of 1T'-MoTe2 quantum dots@3D graphene in shuttle-free Li–S batteries, ACS Nano, 15(2021), No. 8, p. 13279. doi: 10.1021/acsnano.1c03011
    [11]
    T.Z. Hou, X.A. Chen, H.J. Peng, et al., Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium–sulfur batteries, Small, 12(2016), No. 24, p. 3283. doi: 10.1002/smll.201600809
    [12]
    B. Fan, D.K. Zhao, W. Xu, et al., Nitrogen-doped carbonaceous scaffold anchored with cobalt nanoparticles as sulfur host for efficient adsorption and catalytic conversion of polysulfides in lithium–sulfur batteries, Electrochim. Acta, 383(2021), art. No. 138371. doi: 10.1016/j.electacta.2021.138371
    [13]
    T.Y. Wang, D.W. Su, Y. Chen, et al., Biomimetic 3D Fe/CeO2 decorated N-doped carbon nanotubes architectures for high-performance lithium–sulfur batteries, Chem. Eng. J., 401(2020), art. No. 126079. doi: 10.1016/j.cej.2020.126079
    [14]
    M. Qiao, C. Tang, G. He, et al., Graphene/nitrogen-doped porous carbon sandwiches for the metal-free oxygen reduction reaction: Conductivity versus active sites, J. Mater. Chem. A, 4(2016), No. 32, p. 12658. doi: 10.1039/C6TA04578B
    [15]
    M.E. Zhong, J.D. Guan, Q.J. Feng, et al., Accelerated polysulfide redox kinetics revealed by ternary sandwich-type S@Co/N-doped carbon nanosheet for high-performance lithium–sulfur batteries, Carbon, 128(2018), p. 86. doi: 10.1016/j.carbon.2017.11.084
    [16]
    Z.X. Zhao, Z.L. Yi, H.J. Li, et al., Synergetic effect of spatially separated dual co-catalyst for accelerating multiple conversion reaction in advanced lithium sulfur batteries, Nano Energy, 81(2021), art. No. 105621. doi: 10.1016/j.nanoen.2020.105621
    [17]
    Z.L. Chen, S.P. Cheng, Y.X. Chen, X.H. Xia, and H.B. Liu, Pomegranate-like S@N-doped graphitized carbon spheres as high-performance cathode for lithium–sulfur battery, Mater. Lett., 263(2020), art. No. 127283. doi: 10.1016/j.matlet.2019.127283
    [18]
    C. Ma, Y.Q. Zhang, Y.M. Feng, et al., Engineering Fe–N coordination structures for fast redox conversion in lithium–sulfur batteries, Adv. Mater., 33(2021), No. 30, art. No. 2100171. doi: 10.1002/adma.202100171
    [19]
    J. Wang, B. Li, Y. Li, et al., Facile synthesis of atomic Fe–N–C materials and dual roles investigation of Fe–N4 sites in Fenton-like reactions, Adv. Sci., 8(2021), No. 22, art. No. 2101824. doi: 10.1002/advs.202101824
    [20]
    Q.M. Chen, S.Q. Li, Y. Liu, et al., Size-controllable Fe–N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase, Sens. Actuators B, 305(2020), art. No. 127511. doi: 10.1016/j.snb.2019.127511
    [21]
    Y. Qiu, L.S. Fan, M.X. Wang, et al., Precise synthesis of Fe–N2 sites with high activity and stability for long-life lithium–sulfur batteries, ACS Nano, 14(2020), No. 11, p. 16105. doi: 10.1021/acsnano.0c08056
    [22]
    X.L. Wang and L.M. Yang, Efficient modulation of the catalytic performance of electrocatalytic nitrogen reduction with transition metals anchored on N/O-codoped graphene by coordination engineering, J. Mater. Chem. A, 10(2022), No. 3, p. 1481. doi: 10.1039/D1TA08877G
    [23]
    A.P. Doherty, E. Marley, R. Barhdadi, V. Puchelle, K. Wagner, and G.G. Wallace, Mechanism and kinetics of electrocarboxylation of aromatic ketones in ionic liquid, J. Electroanal. Chem., 819(2018), p. 469. doi: 10.1016/j.jelechem.2017.12.035
    [24]
    J.A. Rodríguez-Manzo, C. Pham-Huu, and F. Banhart, Graphene growth by a metal-catalyzed solid-state transformation of amorphous carbon, ACS Nano, 5(2011), No. 2, p. 1529. doi: 10.1021/nn103456z
    [25]
    M.J. Liu, J. Lee, T.C. Yang, et al., Synergies of Fe single atoms and clusters on N-doped carbon electrocatalyst for pH-universal oxygen reduction, Small Methods., 5(2021), No. 5, art. No. 2001165. doi: 10.1002/smtd.202001165
    [26]
    X.M. Guo, S.J. Liu, X.H. Wan, et al., Controllable solid-phase fabrication of an Fe2O3/Fe5C2/Fe–N–C electrocatalyst toward optimizing the oxygen reduction reaction in zinc–air batteries, Nano Lett., 22(2022), No. 12, p. 4879. doi: 10.1021/acs.nanolett.2c01318
    [27]
    V.L. Pham, D.G. Kim, and S.O. Ko, Catalytic degradation of acetaminophen by Fe and N Co-doped multi-walled carbon nanotubes, Environ. Res., 201(2021), art. No. 111535. doi: 10.1016/j.envres.2021.111535
    [28]
    G.Q. Cao, Z.K. Wang, D. Bi, J. Zheng, Q.X. Lai, and Y.Y. Liang, Atomic-scale dispersed Fe-based catalysts confined on nitrogen-doped graphene for Li–S batteries: Polysulfides with enhanced conversion efficiency, Chem. Eur. J., 26(2020), No. 45, p. 10314. doi: 10.1002/chem.202001282
    [29]
    L. Zhang, P. Liang, X.L. Man, et al., N co-doped graphene as a multi-functional anchor material for lithium–sulfur battery, J. Phys. Chem. Solids, 126(2019), p. 280. doi: 10.1016/j.jpcs.2018.11.027
    [30]
    D.L. Vu, N. Kim, Y. Myung, M. Yang, and J.W. Lee, Aluminum phosphate as a bifunctional additive for improved cycling stability of Li–S batteries, J. Power Sources, 459(2020), art. No. 228068. doi: 10.1016/j.jpowsour.2020.228068
    [31]
    M.S. Mirhosseyni and F. Nemati, Fe/N co-doped mesoporous carbon derived from cellulose-based ionic liquid as an efficient heterogeneous catalyst toward nitro aromatic compound reduction reaction, Int. J. Biol. Macromol., 175(2021), p. 432. doi: 10.1016/j.ijbiomac.2021.02.009
    [32]
    P.F. Tian, J.B. Zang, S.W. Song, et al., In situ template reaction method to prepare three-dimensional interconnected Fe–N doped hierarchical porous carbon for efficient oxygen reduction reaction catalysts and high performance supercapacitors, J. Power Sources, 448(2020), art. No. 227443. doi: 10.1016/j.jpowsour.2019.227443
    [33]
    G. Xia, Z.Q. Zheng, J.J. Ye, X.T. Li, M.J. Biggs, and C. Hu, Carbon microspheres with embedded FeP nanoparticles as a cathode electrocatalyst in Li–S batteries, Chem. Eng. J., 406(2021), art. No. 126823. doi: 10.1016/j.cej.2020.126823
    [34]
    R.X. Chen, Y.C. Zhou, and X.D. Li, Cotton-derived Fe/Fe3C-encapsulated carbon nanotubes for high-performance lithium–sulfur batteries, Nano Lett., 22(2022), No. 3, p. 1217. doi: 10.1021/acs.nanolett.1c04380
    [35]
    D.J. Xie, S.L. Mei, Y.L. Xu, et al., Efficient sulfur host based on yolk-shell iron oxide/sulfide-carbon nanospindles for lithium–sulfur batteries, ChemSusChem, 14(2021), No. 5, p. 1404. doi: 10.1002/cssc.202002731
    [36]
    M. Faheem, X. Yin, R.W. Shao, et al., Efficient polysulfide conversion by Fe–N/C active sites anchored in N, P-doped carbon for high-performance lithium–sulfur batteries, J. Alloys Compd., 922(2022), art. No. 166132. doi: 10.1016/j.jallcom.2022.166132
    [37]
    L.B. Ni, S.Q. Duan, H.Y. Zhang, et al., A 3D Graphene/WO3 nanowire composite with enhanced capture and polysulfides conversion catalysis for high-performance Li–S batteries, Carbon, 182(2021), p. 335. doi: 10.1016/j.carbon.2021.05.056
    [38]
    J.R. He, A. Bhargav, and A. Manthiram, Molybdenum boride as an efficient catalyst for polysulfide redox to enable high-energy-density lithium–sulfur batteries, Adv. Mater., 32(2020), No. 40, art. No. 2004741. doi: 10.1002/adma.202004741
    [39]
    T. Wang, J.A. Zhu, Z.X. Wei, et al., Bacteria-derived biological carbon building robust Li–S batteries, Nano Lett., 19(2019), No. 7, p. 4384. doi: 10.1021/acs.nanolett.9b00996
    [40]
    M.E. Zhong, J.C. Sun, X.Q. Shu, et al., N, P, O-codoped biochar from phytoremediation residues: A promising cathode material for Li–S batteries, Nanotechnology, 33(2022), No. 21, art. No. 215403. doi: 10.1088/1361-6528/ac5286
    [41]
    J.F. Liang, Y.Q. Xu, C. Li, et al., Traditional Chinese medicine residue-derived micropore-rich porous carbon frameworks as efficient sulfur hosts for high-performance lithium–sulfur batteries, Dalton Trans., 51(2022), No. 1, p. 129. doi: 10.1039/D1DT02595C
    [42]
    R. Nisticò, F. Guerretta, P.L. Benzi, and G. Magnacca, Chitosan-derived biochars obtained at low pyrolysis temperatures for potential application in electrochemical energy storage devices, Int. J. Biol. Macromol., 164(2020), p. 1825. doi: 10.1016/j.ijbiomac.2020.08.017
    [43]
    M.A. Al-Tahan, Y.T. Dong, R. Zhang, Y.Y. Zhang, and J.M. Zhang, Understanding the high-performance Fe(OH)3@GO nanoarchitecture as effective sulfur hosts for the high capacity of lithium–sulfur batteries, Appl. Surf. Sci., 538(2021), art. No. 148032. doi: 10.1016/j.apsusc.2020.148032
    [44]
    J.K. Xu, P.F. Zhou, L. Dai, et al., A scalable waste-free biorefinery inspires revenue from holistic lignocellulose valorization, Green Chem., 23(2021), No. 16, p. 6008. doi: 10.1039/D1GC01720A
    [45]
    J. Park, B.C. Yu, J.S. Park, et al., Tungsten disulfide catalysts supported on a carbon cloth interlayer for high performance Li–S battery, Adv. Energy Mater., 7(2017), No. 11, art. No. 1602567. doi: 10.1002/aenm.201602567
    [46]
    Z.Y. Han, S.Y. Zhao, J.W. Xiao, et al., Engineering d–p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li–S batteries, Adv. Mater., 33(2021), No. 44, art. No. 2105947. doi: 10.1002/adma.202105947
    [47]
    B. Guan, Y. Zhang, L.S. Fan, et al., Blocking polysulfide with Co2B@CNT via “synergetic adsorptive effect” toward ultrahigh-rate capability and robust lithium–sulfur battery, ACS Nano, 13(2019), No. 6, p. 6742. doi: 10.1021/acsnano.9b01329
    [48]
    T.K. Zhao, J.W. Chen, K.Q. Dai, et al., Boosted polysulfides regulation by iron carbide nanoparticles-embedded porous biomass-derived carbon toward superior lithium–sulfur batteries, J. Colloid Interface Sci., 605(2022), p. 129. doi: 10.1016/j.jcis.2021.07.044
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Share Article

    Article Metrics

    Article Views(726) PDF Downloads(25) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return