Cite this article as: |
Hui Xu, Shufeng Yang, Enhui Wang, Yunsong Liu, Chunyu Guo, Xinmei Hou, and Yanling Zhang, Competitive oxidation behavior of Ni-based superalloy GH4738 at extreme temperature, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 138-145. https://doi.org/10.1007/s12613-023-2687-5 |
Shufeng Yang E-mail: yangshufeng@ustb.edu.cn
Enhui Wang E-mail: wangenhui@ustb.edu.cn
[1] |
W.B. Ma, H.Y. Luo, and X.G. Yang, The effects of grain size and twins density on high temperature oxidation behavior of nickel-based superalloy GH738, Materials, 13(2020), No. 18, art. No. 4166. doi: 10.3390/ma13184166
|
[2] |
V.S.K.G. Kelekanjeri and R.A. Gerhardt, Characterization of microstructural fluctuations in Waspaloy exposed to 760°C for times up to 2500 h, Electrochim. Acta, 51(2006), No. 8-9, p. 1873. doi: 10.1016/j.electacta.2005.02.099
|
[3] |
J. Parkin and S. Birosca, Crystallographic orientation influence on slip system activation and deformation mechanisms in Waspaloy during in situ mechanical loading, J. Alloys Compd., 865(2021), art. No. 158548. doi: 10.1016/j.jallcom.2020.158548
|
[4] |
G. Stein-Brzozowska, D.M. Flórez, J. Maier, and G. Scheffknecht, Nickel-base superalloys for ultra-supercritical coal-fired power plants: Fireside corrosion. Laboratory studies and power plant exposures, Fuel, 108(2013), p. 521. doi: 10.1016/j.fuel.2012.11.081
|
[5] |
L. Wang, G. Yang, T. Lei, S.B. Yin, and L. Wang, Hot deformation behavior of GH738 for A-USC turbine blades, J. Iron Steel Res. Int., 22(2015), No. 11, p. 1043. doi: 10.1016/S1006-706X(15)30110-2
|
[6] |
M. Li, P. Wang, Y.Q. Yang, et al., Oxidation behavior of a nickel-based single crystal superalloy at 1100°C under different oxygen concentration, J. Mater. Sci., 57(2022), No. 5, p. 3822. doi: 10.1007/s10853-022-06885-7
|
[7] |
L. Zheng, M.C. Zhang, R. Chellali, and J.X. Dong, Investigations on the growing, cracking and spalling of oxides scales of powder metallurgy Rene95 nickel-based superalloy, Appl. Surf. Sci., 257(2011), No. 23, p. 9762. doi: 10.1016/j.apsusc.2011.06.005
|
[8] |
D. Kim, C. Jang, and W.S. Ryu, Oxidation characteristics and oxide layer evolution of alloy 617 and Haynes 230 at 900°C and 1100°C, Oxid. Met., 71(2009), No. 5-6, p. 271. doi: 10.1007/s11085-009-9142-5
|
[9] |
H.Q. Pei, Z.X. Wen, and Z.F. Yue, Long-term oxidation behavior and mechanism of DD6 Ni-based single crystal superalloy at 1050°C and 1100°C in air, J. Alloys Compd., 704(2017), p. 218. doi: 10.1016/j.jallcom.2017.02.031
|
[10] |
J. Wang, H. Xue, and Y. Wang, Oxidation behavior of Ni-based superalloy GH738 in static air between 800 and 1000°C, Rare Met., 40(2021), No. 3, p. 616. doi: 10.1007/s12598-020-01513-2
|
[11] |
J.H. Chen, P.M. Rogers, and J.A. Little, Oxidation behavior of several chromia-forming commercial nickel-base superalloys, Oxid. Met., 47(1997), No. 5-6, p. 381. doi: 10.1007/BF02134783
|
[12] |
X.P. Zhuang, Y. Tan, X.G. You, et al., High temperature oxidation behavior and mechanism of a new Ni–Co-based superalloy, Vacuum, 189(2021), art. No. 110219. doi: 10.1016/j.vacuum.2021.110219
|
[13] |
J.H. Xiao, Y. Xiong, L. Wang, et al., Oxidation behavior of high Hf nickel-based superalloy in air at 900, 1000 and 1100°C, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1957. doi: 10.1007/s12613-020-2204-z
|
[14] |
K. Rehman, N.C. Sheng, Z.R. Sang, et al., Comparative study of the reactive elements effects on oxidation behavior of a Ni-based superalloy, Vacuum, 191(2021), art. No. 110382. doi: 10.1016/j.vacuum.2021.110382
|
[15] |
E. Schmucker, C. Petitjean, L. Martinelli, P.J. Panteix, S.B. Lagha, and M. Vilasi, Oxidation of Ni–Cr alloy at intermediate oxygen pressures. I. Diffusion mechanisms through the oxide layer, Corros. Sci., 111(2016), p. 474. doi: 10.1016/j.corsci.2016.05.025
|
[16] |
J.F. Jiang, G.F. Xiao, Y. Wang, and Y.Z. Liu, High temperature oxidation behavior of the wrought Ni-based superalloy GH4037 in the solid and semi-solid state, J. Alloys Compd., 784(2019), p. 394. doi: 10.1016/j.jallcom.2019.01.093
|
[17] |
P. Berthod, J.P K. Gomis, and G. Medjahdi, Oxidation behavior and structure stability at 1250°C of chromium-rich TaC-containing cast alloys based on nickel and cobalt, Metall. Mater. Trans. A, 51(2020), No. 8, p. 4168. doi: 10.1007/s11661-020-05828-8
|
[18] |
F.A. Pérez-González, N.F. Garza-Montes-de Oca, and R. Colás, High temperature oxidation of the Haynes 282© nickel-based superalloy, Oxid. Met., 82(2014), No. 3, p. 145.
|
[19] |
J.D. Cao, J.S. Zhang, R.F. Chen, Y.X. Ye, and Y.Q. Hua, High temperature oxidation behavior of Ni-based superalloy GH202, Mater. Charact., 118(2016), p. 122. doi: 10.1016/j.matchar.2016.05.013
|
[20] |
F.H. Latief, K. Kakehi, and Y. Tashiro, Oxidation behavior characteristics of an aluminized Ni-based single crystal superalloy CM186LC between 900°C and 1100°C in air, J. Ind. Eng. Chem., 19(2013), No. 6, p. 1926. doi: 10.1016/j.jiec.2013.02.039
|
[21] |
F.H. Latief, K. Kakehi, X.T. Fu, and Y. Tashiro, Isothermal oxidation behavior characteristics of a second generation Ni-base single crystal superalloy in air at 1000 and 1100°C, Int. J. Electrochem. Sci., 7(2012), No. 9, p. 8369. doi: 10.1016/S1452-3981(23)18000-X
|
[22] |
B. Albert, R. Völkl, and U. Glatzel, High-temperature oxidation behavior of two nickel-based superalloys produced by metal injection molding for aero engine applications, Metall. Mater. Trans. A, 45(2014), No. 10, p. 4561. doi: 10.1007/s11661-014-2391-1
|
[23] |
R.F. Tylecote and W.K. Appleby, Some factors influencing the adherence of oxides on metals, Mater. Corros., 23(1972), No. 10, p. 855. doi: 10.1002/maco.19720231002
|
[24] |
T. Sanviemvongsak, D. Monceau, C. Desgranges, and B. Macquaire, Intergranular oxidation of Ni-base alloy 718 with a focus on additive manufacturing, Corros. Sci., 170(2020), art. No. 108684. doi: 10.1016/j.corsci.2020.108684
|
[25] |
D.J. Young, High Temperature Oxidation and Corrosion of Metals, 2nd ed., Elsevier, Amsterdam, 2016, p. 31.
|
[26] |
L. Zheng, M.C. Zhang, and J.X. Dong, Oxidation behavior and mechanism of powder metallurgy Rene95 nickel based superalloy between 800 and 1000°C, Appl. Surf. Sci., 256(2010), No. 24, p. 7510. doi: 10.1016/j.apsusc.2010.05.098
|
[27] |
C. Desgranges, F. Lequien, E. Aublant, M. Nastar, and D. Monceau, Depletion and voids formation in the substrate during high temperature oxidation of Ni–Cr alloys, Oxid. Met., 79(2013), No. 1, p. 93.
|
[28] |
D.L. Douglass, A critique of internal oxidation in alloys during the post-wagner era, Oxid. Met., 44(1995), No. 1, p. 81.
|
[29] |
N. Birks, G.H. Meier, and F.S. Pettit, Introduction to the High Temperature Oxidation of Metals, 2nd ed., Cambridge University Press, Cambridge, 2006.
|
[30] |
J. Litz, A. Rahmel, M. Schorr, and J. Weiss, Scale formation on the Ni-base superalloys IN 939 and IN 738 LC, Oxid. Met., 32(1989), No. 3, p. 167.
|
[31] |
A. Atkinson, M.R. Levy, S. Roche, and R.A. Rudkin, Defect properties of Ti-doped Cr2O3, Solid State Ionics, 177(2006), No. 19-25, p. 1767. doi: 10.1016/j.ssi.2005.11.015
|
[32] |
J.W. Teng, X.J. Gong, B.B. Yang, S. Yu, J.T. Liu, and Y.P. Li, Influence of Ti addition on oxidation behavior of Ni–Cr–W-based superalloys, Corros. Sci., 193(2021), art. No. 109882.
|
[33] |
S. Cruchley, H.E. Evans, M.P. Taylor, M.C. Hardy, and S. Stekovic, Chromia layer growth on a Ni-based superalloy: Sub-parabolic kinetics and the role of titanium, Corros. Sci., 75(2013), p. 58. doi: 10.1016/j.corsci.2013.05.016
|
[34] |
B. Chattopadhyay and G.C. Wood, The transient oxidation of alloys, Oxid. Met., 2(1970), No. 4, p. 373. doi: 10.1007/BF00604477
|
[35] |
Z.Y. Zhu, Y.F. Cai, Y.J. Gong, G.P. Shen, Y.G. Tu, and G.F. Zhang, Isothermal oxidation behavior and mechanism of a nickel-based superalloy at 1000°C, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 776. doi: 10.1007/s12613-017-1461-y
|
[36] |
M.T. Lapington, D.J. Crudden, R.C. Reed, M.P. Moody, and P.A.J. Bagot, Characterization of oxidation mechanisms in a family of polycrystalline chromia-forming nickel-base superalloys, Acta Mater., 206(2021), art. No. 116626. doi: 10.1016/j.actamat.2021.116626
|
[37] |
C.Y. Guo, E.H. Wang, S.Z. Wang, et al., Oxidation mechanism of MAX phases (Ti3AlC2 powders) with and without Sn doping, Corros. Sci., 180(2021), art. No. 109197. doi: 10.1016/j.corsci.2020.109197
|
[38] |
C.Y. Guo, X.J. Duan, Z. Fang, et al., A new strategy for long-term complex oxidation of MAX phases: Database generation and oxidation kinetic model establishment with aid of machine learning, Acta Mater., 241(2022), art. No. 118378. doi: 10.1016/j.actamat.2022.118378
|
[39] |
E.H. Wang, X.M. Hou, Y.F. Chen, et al., Progress in cognition of gas–solid interface reaction for non-oxide ceramics at high temperature, Crit. Rev. Solid State Mater. Sci., 46(2021), No. 3, p. 218. doi: 10.1080/10408436.2020.1713047
|
[40] |
E.H. Wang, J. Cheng, J.W. Ma, et al., Effect of temperature on the initial oxidation behavior and kinetics of 5Cr ferritic steel in air, Metall. Mater. Trans. A, 49(2018), No. 10, p. 5169. doi: 10.1007/s11661-018-4781-2
|