Hui Xu, Shufeng Yang, Enhui Wang, Yunsong Liu, Chunyu Guo, Xinmei Hou, and Yanling Zhang, Competitive oxidation behavior of Ni-based superalloy GH4738 at extreme temperature, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 138-145. https://doi.org/10.1007/s12613-023-2687-5
Cite this article as:
Hui Xu, Shufeng Yang, Enhui Wang, Yunsong Liu, Chunyu Guo, Xinmei Hou, and Yanling Zhang, Competitive oxidation behavior of Ni-based superalloy GH4738 at extreme temperature, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 138-145. https://doi.org/10.1007/s12613-023-2687-5
Research Article

Competitive oxidation behavior of Ni-based superalloy GH4738 at extreme temperature

+ Author Affiliations
  • Corresponding authors:

    Shufeng Yang    E-mail: yangshufeng@ustb.edu.cn

    Enhui Wang    E-mail: wangenhui@ustb.edu.cn

  • Received: 27 January 2023Revised: 3 May 2023Accepted: 1 June 2023Available online: 6 June 2023
  • A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isothermal experiments. As a result of the competitive diffusion of alloying elements, the oxide scale included an outermost porous oxide layer (OOL), an inner relatively dense oxide layer (IOL), and an internal oxide zone (IOZ), depending on the temperature and time. A high temperature led to the formation of large voids at the IOL/IOZ interface. At 1200°C, the continuity of the Cr-rich oxide layer in the IOL was destroyed, and thus, spallation occurred. Extension of oxidation time contributed to the size of Al-rich oxide particles with the increase in the IOZ. Based on this finding, the oxidation kinetics of GH4738 was discussed, and the corresponding oxidation behavior at 900–1100°C was predicted.
  • loading
  • [1]
    W.B. Ma, H.Y. Luo, and X.G. Yang, The effects of grain size and twins density on high temperature oxidation behavior of nickel-based superalloy GH738, Materials, 13(2020), No. 18, art. No. 4166. doi: 10.3390/ma13184166
    [2]
    V.S.K.G. Kelekanjeri and R.A. Gerhardt, Characterization of microstructural fluctuations in Waspaloy exposed to 760°C for times up to 2500 h, Electrochim. Acta, 51(2006), No. 8-9, p. 1873. doi: 10.1016/j.electacta.2005.02.099
    [3]
    J. Parkin and S. Birosca, Crystallographic orientation influence on slip system activation and deformation mechanisms in Waspaloy during in situ mechanical loading, J. Alloys Compd., 865(2021), art. No. 158548. doi: 10.1016/j.jallcom.2020.158548
    [4]
    G. Stein-Brzozowska, D.M. Flórez, J. Maier, and G. Scheffknecht, Nickel-base superalloys for ultra-supercritical coal-fired power plants: Fireside corrosion. Laboratory studies and power plant exposures, Fuel, 108(2013), p. 521. doi: 10.1016/j.fuel.2012.11.081
    [5]
    L. Wang, G. Yang, T. Lei, S.B. Yin, and L. Wang, Hot deformation behavior of GH738 for A-USC turbine blades, J. Iron Steel Res. Int., 22(2015), No. 11, p. 1043. doi: 10.1016/S1006-706X(15)30110-2
    [6]
    M. Li, P. Wang, Y.Q. Yang, et al., Oxidation behavior of a nickel-based single crystal superalloy at 1100°C under different oxygen concentration, J. Mater. Sci., 57(2022), No. 5, p. 3822. doi: 10.1007/s10853-022-06885-7
    [7]
    L. Zheng, M.C. Zhang, R. Chellali, and J.X. Dong, Investigations on the growing, cracking and spalling of oxides scales of powder metallurgy Rene95 nickel-based superalloy, Appl. Surf. Sci., 257(2011), No. 23, p. 9762. doi: 10.1016/j.apsusc.2011.06.005
    [8]
    D. Kim, C. Jang, and W.S. Ryu, Oxidation characteristics and oxide layer evolution of alloy 617 and Haynes 230 at 900°C and 1100°C, Oxid. Met., 71(2009), No. 5-6, p. 271. doi: 10.1007/s11085-009-9142-5
    [9]
    H.Q. Pei, Z.X. Wen, and Z.F. Yue, Long-term oxidation behavior and mechanism of DD6 Ni-based single crystal superalloy at 1050°C and 1100°C in air, J. Alloys Compd., 704(2017), p. 218. doi: 10.1016/j.jallcom.2017.02.031
    [10]
    J. Wang, H. Xue, and Y. Wang, Oxidation behavior of Ni-based superalloy GH738 in static air between 800 and 1000°C, Rare Met., 40(2021), No. 3, p. 616. doi: 10.1007/s12598-020-01513-2
    [11]
    J.H. Chen, P.M. Rogers, and J.A. Little, Oxidation behavior of several chromia-forming commercial nickel-base superalloys, Oxid. Met., 47(1997), No. 5-6, p. 381. doi: 10.1007/BF02134783
    [12]
    X.P. Zhuang, Y. Tan, X.G. You, et al., High temperature oxidation behavior and mechanism of a new Ni–Co-based superalloy, Vacuum, 189(2021), art. No. 110219. doi: 10.1016/j.vacuum.2021.110219
    [13]
    J.H. Xiao, Y. Xiong, L. Wang, et al., Oxidation behavior of high Hf nickel-based superalloy in air at 900, 1000 and 1100°C, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1957. doi: 10.1007/s12613-020-2204-z
    [14]
    K. Rehman, N.C. Sheng, Z.R. Sang, et al., Comparative study of the reactive elements effects on oxidation behavior of a Ni-based superalloy, Vacuum, 191(2021), art. No. 110382. doi: 10.1016/j.vacuum.2021.110382
    [15]
    E. Schmucker, C. Petitjean, L. Martinelli, P.J. Panteix, S.B. Lagha, and M. Vilasi, Oxidation of Ni–Cr alloy at intermediate oxygen pressures. I. Diffusion mechanisms through the oxide layer, Corros. Sci., 111(2016), p. 474. doi: 10.1016/j.corsci.2016.05.025
    [16]
    J.F. Jiang, G.F. Xiao, Y. Wang, and Y.Z. Liu, High temperature oxidation behavior of the wrought Ni-based superalloy GH4037 in the solid and semi-solid state, J. Alloys Compd., 784(2019), p. 394. doi: 10.1016/j.jallcom.2019.01.093
    [17]
    P. Berthod, J.P K. Gomis, and G. Medjahdi, Oxidation behavior and structure stability at 1250°C of chromium-rich TaC-containing cast alloys based on nickel and cobalt, Metall. Mater. Trans. A, 51(2020), No. 8, p. 4168. doi: 10.1007/s11661-020-05828-8
    [18]
    F.A. Pérez-González, N.F. Garza-Montes-de Oca, and R. Colás, High temperature oxidation of the Haynes 282© nickel-based superalloy, Oxid. Met., 82(2014), No. 3, p. 145.
    [19]
    J.D. Cao, J.S. Zhang, R.F. Chen, Y.X. Ye, and Y.Q. Hua, High temperature oxidation behavior of Ni-based superalloy GH202, Mater. Charact., 118(2016), p. 122. doi: 10.1016/j.matchar.2016.05.013
    [20]
    F.H. Latief, K. Kakehi, and Y. Tashiro, Oxidation behavior characteristics of an aluminized Ni-based single crystal superalloy CM186LC between 900°C and 1100°C in air, J. Ind. Eng. Chem., 19(2013), No. 6, p. 1926. doi: 10.1016/j.jiec.2013.02.039
    [21]
    F.H. Latief, K. Kakehi, X.T. Fu, and Y. Tashiro, Isothermal oxidation behavior characteristics of a second generation Ni-base single crystal superalloy in air at 1000 and 1100°C, Int. J. Electrochem. Sci., 7(2012), No. 9, p. 8369. doi: 10.1016/S1452-3981(23)18000-X
    [22]
    B. Albert, R. Völkl, and U. Glatzel, High-temperature oxidation behavior of two nickel-based superalloys produced by metal injection molding for aero engine applications, Metall. Mater. Trans. A, 45(2014), No. 10, p. 4561. doi: 10.1007/s11661-014-2391-1
    [23]
    R.F. Tylecote and W.K. Appleby, Some factors influencing the adherence of oxides on metals, Mater. Corros., 23(1972), No. 10, p. 855. doi: 10.1002/maco.19720231002
    [24]
    T. Sanviemvongsak, D. Monceau, C. Desgranges, and B. Macquaire, Intergranular oxidation of Ni-base alloy 718 with a focus on additive manufacturing, Corros. Sci., 170(2020), art. No. 108684. doi: 10.1016/j.corsci.2020.108684
    [25]
    D.J. Young, High Temperature Oxidation and Corrosion of Metals, 2nd ed., Elsevier, Amsterdam, 2016, p. 31.
    [26]
    L. Zheng, M.C. Zhang, and J.X. Dong, Oxidation behavior and mechanism of powder metallurgy Rene95 nickel based superalloy between 800 and 1000°C, Appl. Surf. Sci., 256(2010), No. 24, p. 7510. doi: 10.1016/j.apsusc.2010.05.098
    [27]
    C. Desgranges, F. Lequien, E. Aublant, M. Nastar, and D. Monceau, Depletion and voids formation in the substrate during high temperature oxidation of Ni–Cr alloys, Oxid. Met., 79(2013), No. 1, p. 93.
    [28]
    D.L. Douglass, A critique of internal oxidation in alloys during the post-wagner era, Oxid. Met., 44(1995), No. 1, p. 81.
    [29]
    N. Birks, G.H. Meier, and F.S. Pettit, Introduction to the High Temperature Oxidation of Metals, 2nd ed., Cambridge University Press, Cambridge, 2006.
    [30]
    J. Litz, A. Rahmel, M. Schorr, and J. Weiss, Scale formation on the Ni-base superalloys IN 939 and IN 738 LC, Oxid. Met., 32(1989), No. 3, p. 167.
    [31]
    A. Atkinson, M.R. Levy, S. Roche, and R.A. Rudkin, Defect properties of Ti-doped Cr2O3, Solid State Ionics, 177(2006), No. 19-25, p. 1767. doi: 10.1016/j.ssi.2005.11.015
    [32]
    J.W. Teng, X.J. Gong, B.B. Yang, S. Yu, J.T. Liu, and Y.P. Li, Influence of Ti addition on oxidation behavior of Ni–Cr–W-based superalloys, Corros. Sci., 193(2021), art. No. 109882.
    [33]
    S. Cruchley, H.E. Evans, M.P. Taylor, M.C. Hardy, and S. Stekovic, Chromia layer growth on a Ni-based superalloy: Sub-parabolic kinetics and the role of titanium, Corros. Sci., 75(2013), p. 58. doi: 10.1016/j.corsci.2013.05.016
    [34]
    B. Chattopadhyay and G.C. Wood, The transient oxidation of alloys, Oxid. Met., 2(1970), No. 4, p. 373. doi: 10.1007/BF00604477
    [35]
    Z.Y. Zhu, Y.F. Cai, Y.J. Gong, G.P. Shen, Y.G. Tu, and G.F. Zhang, Isothermal oxidation behavior and mechanism of a nickel-based superalloy at 1000°C, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 776. doi: 10.1007/s12613-017-1461-y
    [36]
    M.T. Lapington, D.J. Crudden, R.C. Reed, M.P. Moody, and P.A.J. Bagot, Characterization of oxidation mechanisms in a family of polycrystalline chromia-forming nickel-base superalloys, Acta Mater., 206(2021), art. No. 116626. doi: 10.1016/j.actamat.2021.116626
    [37]
    C.Y. Guo, E.H. Wang, S.Z. Wang, et al., Oxidation mechanism of MAX phases (Ti3AlC2 powders) with and without Sn doping, Corros. Sci., 180(2021), art. No. 109197. doi: 10.1016/j.corsci.2020.109197
    [38]
    C.Y. Guo, X.J. Duan, Z. Fang, et al., A new strategy for long-term complex oxidation of MAX phases: Database generation and oxidation kinetic model establishment with aid of machine learning, Acta Mater., 241(2022), art. No. 118378. doi: 10.1016/j.actamat.2022.118378
    [39]
    E.H. Wang, X.M. Hou, Y.F. Chen, et al., Progress in cognition of gas–solid interface reaction for non-oxide ceramics at high temperature, Crit. Rev. Solid State Mater. Sci., 46(2021), No. 3, p. 218. doi: 10.1080/10408436.2020.1713047
    [40]
    E.H. Wang, J. Cheng, J.W. Ma, et al., Effect of temperature on the initial oxidation behavior and kinetics of 5Cr ferritic steel in air, Metall. Mater. Trans. A, 49(2018), No. 10, p. 5169. doi: 10.1007/s11661-018-4781-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(441) PDF Downloads(35) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return