Cite this article as: |
Chaozhi Xiong, Zhenwu Shao, Jia’nan Hong, Kexin Bi, Qingsong Huang, and Chong Liu, Structural survey of metal–covalent organic frameworks and covalent metal–organic frameworks, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2297-2309. https://doi.org/10.1007/s12613-023-2690-x |
Chong Liu E-mail: liuchong@scu.edu.cn
[1] |
C.S. Diercks and O.M. Yaghi, The atom, the molecule, and the covalent organic framework, Science, 355(2017), No. 6328, art. No. eaal1585. doi: 10.1126/science.aal1585
|
[2] |
G. Maurin, C. Serre, A. Cooper, and G. Férey, The new age of MOFs and of their porous-related solids, Chem. Soc. Rev., 46(2017), No. 11, p. 3104. doi: 10.1039/C7CS90049J
|
[3] |
K.Y. Geng, T. He, R.Y. Liu, et al., Covalent organic frameworks: Design, synthesis, and functions, Chem. Rev., 120(2020), No. 16, p. 8814. doi: 10.1021/acs.chemrev.9b00550
|
[4] |
N. Yuan, Y.R. Deng, S.H. Wang, et al., Towards superior lithium–sulfur batteries with metal–organic frameworks and their derivatives, Tungsten, 4(2022), No. 4, p. 269. doi: 10.1007/s42864-022-00186-x
|
[5] |
Y.X. Du, Y.T. Zhou, M.Z. Zhu, Co-based MOF derived metal catalysts: From nano-level to atom-level, Tungsten, 5(2023), No. 2, p. 201. doi: 10.1007/s42864-022-00197-8
|
[6] |
T. Wei, Z.H. Zhang, Q. Zhang, et al., Anion-immobilized solid composite electrolytes based on metal-organic frameworks and superacid ZrO2 fillers for high-performance all solid-state lithium metal batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1636. doi: 10.1007/s12613-021-2289-z
|
[7] |
S.Y. Zhang, Y.C. Xue, Y.T. Zhang, et al., KOH-assisted aqueous synthesis of bimetallic metal–organic frameworks and their derived selenide composites for efficient lithium storage, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 601. doi: 10.1007/s12613-022-2539-8
|
[8] |
Z.Y. Lu, J.H. He, M.C. Song, et al., Bullet-like vanadium-based MOFs as a highly active catalyst for promoting the hydrogen storage property in MgH2, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 44. doi: 10.1007/s12613-021-2372-5
|
[9] |
Q.Y. Wang, J. Liu, Y.D. Li, Z.C. Lou, and Y.J. Li, A literature review of MOF derivatives of electromagnetic wave absorbers mainly based on pyrolysis, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 446. doi: 10.1007/s12613-022-2562-9
|
[10] |
Z.G. Gao, K. Yang, Z.H. Zhao, et al., Design principles in MOF-derived electromagnetic wave absorption materials: Review and perspective, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 405. doi: 10.1007/s12613-022-2555-8
|
[11] |
J.Q. Dong, X. Han, Y. Liu, H.Y. Li, and Y. Cui, Metal–covalent organic frameworks (MCOFs): A Bridge between metal–organic frameworks and covalent organic frameworks, Angew. Chem. Int. Ed., 59(2020), No. 33, p. 13722. doi: 10.1002/anie.202004796
|
[12] |
W.K. Han, Y. Liu, X.D. Yan, and Z.G. Gu, Coordination directed metal covalent organic frameworks, Mater. Chem. Front., 7(2023), p. 2995.
|
[13] |
H.Y. Duan, X. Chen, Y.N. Yang, et al., Tailoring stability, catalytic activity and selectivity of covalent metal-organic frameworks via steric modification of metal nodes, J. Mater. Chem. A, 11(2023), No. 24, p. 12777. doi: 10.1039/D2TA08797A
|
[14] |
X. Han, Q.C. Xia, J.J. Huang, Y. Liu, C.X. Tan, and Y. Cui, Chiral covalent organic frameworks with high chemical stability for heterogeneous asymmetric catalysis, J. Am. Chem. Soc., 139(2017), No. 25, p. 8693. doi: 10.1021/jacs.7b04008
|
[15] |
L.H. Li, X.L. Feng, X.H. Cui, Y.X. Ma, S.Y. Ding, and W. Wang, Salen-based covalent organic framework, J. Am. Chem. Soc., 139(2017), No. 17, p. 6042. doi: 10.1021/jacs.7b01523
|
[16] |
Z.F. Yang, W.J. Hao, X. Su, et al., Metallosalphen-based 2D covalent organic frameworks with an unprecedented tju topology via K-shaped two-in-one monomers, Chem. Mater., 34(2022), No. 13, p. 5888. doi: 10.1021/acs.chemmater.2c00738
|
[17] |
W.B. Liu, X.K. Li, C.M. Wang, et al., A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction, J. Am. Chem. Soc., 141(2019), No. 43, p. 17431. doi: 10.1021/jacs.9b09502
|
[18] |
Y.Y. Qian, D.D. Li, Y.L. Han, and H.L. Jiang, Photocatalytic molecular oxygen activation by regulating excitonic effects in covalent organic frameworks, J. Am. Chem. Soc., 142(2020), No. 49, p. 20763. doi: 10.1021/jacs.0c09727
|
[19] |
Y.N. Gong, W.H. Zhong, Y. Li, et al., Regulating photocatalysis by spin-state manipulation of cobalt in covalent organic frameworks, J. Am. Chem. Soc., 142(2020), No. 39, p. 16723. doi: 10.1021/jacs.0c07206
|
[20] |
R.F. Chen, Y. Wang, Y.A. Ma, et al., Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution, Nat. Commun., 12(2021), No. 1, art. No. 1354. doi: 10.1038/s41467-021-21527-3
|
[21] |
M.C. Wang, M. Ballabio, M. Wang, et al., Unveiling electronic properties in metal–phthalocyanine-based pyrazine-linked conjugated two-dimensional covalent organic frameworks, J. Am. Chem. Soc., 141(2019), No. 42, p. 16810. doi: 10.1021/jacs.9b07644
|
[22] |
H. Zhong, M. Wang, M. Ghorbani-Asl, et al., Boosting the electrocatalytic conversion of nitrogen to ammonia on metal-phthalocyanine-based two-dimensional conjugated covalent organic frameworks, J. Am. Chem. Soc., 143(2021), No. 47, p. 19992. doi: 10.1021/jacs.1c11158
|
[23] |
M. Lu, M. Zhang, C.G. Liu, et al., Stable dioxin-linked metallophthalocyanine covalent organic frameworks (COFs) as photo-coupled electrocatalysts for CO2 reduction, Angew. Chem. Int. Ed., 60(2021), No. 9, p. 4864. doi: 10.1002/anie.202011722
|
[24] |
S.Z. Yang, W.H. Hu, X. Zhang, et al., 2D covalent organic frameworks as intrinsic photocatalysts for visible light-driven CO2 reduction, J. Am. Chem. Soc., 140(2018), No. 44, p. 14614. doi: 10.1021/jacs.8b09705
|
[25] |
X.W. Wu, X. Han, Y.H. Liu, Y. Liu, and Y. Cui, Control interlayer stacking and chemical stability of two-dimensional covalent organic frameworks via steric tuning, J. Am. Chem. Soc., 140(2018), No. 47, p. 16124. doi: 10.1021/jacs.8b08452
|
[26] |
A.M. Kaczmarek, Y.Y. Liu, M.K. Kaczmarek, et al., Developing luminescent ratiometric thermometers based on a covalent organic framework (COF), Angew. Chem. Int. Ed., 59(2020), No. 5, p. 1932. doi: 10.1002/anie.201913983
|
[27] |
Q. Guan, L.L. Zhou, and Y.B. Dong, Metalated covalent organic frameworks: From synthetic strategies to diverse applications, Chem. Soc. Rev., 51(2022), No. 15, p. 6307. doi: 10.1039/D1CS00983D
|
[28] |
M. O’Keeffe, M.A. Peskov, S.J. Ramsden, and O.M. Yaghi, The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets, Acc. Chem. Res., 41(2008), No. 12, p. 1782. doi: 10.1021/ar800124u
|
[29] |
A.P. Shevchenko, A.A. Shabalin, I.Y. Karpukhin, and V.A. Blatov, Topological representations of crystal structures: Generation, analysis and implementation in the TopCryst system, Sci. Technol. Adv. Mater.:Methods, 2(2022), No. 1, p. 250.
|
[30] |
H.L. Nguyen, F. Gándara, H. Furukawa, T.L.H. Doan, K.E. Cordova, and O.M. Yaghi, A titanium–organic framework as an exemplar of combining the chemistry of metal–and covalent–organic frameworks, J. Am. Chem. Soc., 138(2016), No. 13, p. 4330. doi: 10.1021/jacs.6b01233
|
[31] |
H.L. Nguyen, T.T. Vu, D. Le, T.L.H. Doan, V.Q. Nguyen, and N.T.S. Phan, A titanium–organic framework: Engineering of the band-gap energy for photocatalytic property enhancement, ACS Catal., 7(2017), No. 1, p. 338. doi: 10.1021/acscatal.6b02642
|
[32] |
J.N. Chang, Q. Li, Y. Yan, et al., Covalent-bonding oxidation group and titanium cluster to synthesize a porous crystalline catalyst for selective photo-oxidation biomass valorization, Angew. Chem. Int. Ed., 61(2022), No. 37, art. No. e202209289. doi: 10.1002/anie.202209289
|
[33] |
R.J. Wei, H.G. Zhou, Z.Y. Zhang, G.H. Ning, and D. Li, Copper (I)–organic frameworks for catalysis: Networking metal clusters with dynamic covalent chemistry, CCS Chem., 3(2021), No. 7, p. 2045. doi: 10.31635/ccschem.020.202000401
|
[34] |
R.J. Wei, P.Y. You, H.Y. Duan, et al., Ultrathin metal–organic framework nanosheets exhibiting exceptional catalytic activity, J. Am. Chem. Soc., 144(2022), No. 38, p. 17487. doi: 10.1021/jacs.2c06312
|
[35] |
J. Luo, X. Luo, M. Xie, et al., Selective and rapid extraction of trace amount of gold from complex liquids with silver(I)-organic frameworks, Nat. Commun., 13(2022), No. 1, art. No. 7771. doi: 10.1038/s41467-022-35467-z
|
[36] |
X.M. Li, J.Y. Wang, F.F. Xue, et al., An imine-linked metal–organic framework as a reactive oxygen species generator, Angew. Chem. Int. Ed., 60(2021), No. 5, p. 2534. doi: 10.1002/anie.202012947
|
[37] |
X.X. Wang, X. Ding, Y.C. Jin, et al., Post-nickelation of a crystalline trinuclear copper organic framework for synergistic photocatalytic carbon dioxide conversion, Angew. Chem. Int. Ed., 62(2023), No. 18, art. No. e202302808. doi: 10.1002/anie.202302808
|
[38] |
J. Zhou, J. Li, L. Kan, et al., Linking oxidative and reductive clusters to prepare crystalline porous catalysts for photocatalytic CO2 reduction with H2O, Nat. Commun., 13(2022), art. No. 4681. doi: 10.1038/s41467-022-32449-z
|
[39] |
J.P. Zhao, J.E. Luo, Z.H. Lin, et al., Chiral copper(i)–organic frameworks for dye degradation and the enantioselective recognition of amino acids, Inorg. Chem. Front., 9(2022), No. 19, p. 4907. doi: 10.1039/D2QI01337A
|
[40] |
S.W. Ke, Y.D. Wang, J.A. Su, et al., Redox-active covalent organic frameworks with nickel–bis(dithiolene) units as guiding layers for high-performance lithium metal batteries, J. Am. Chem. Soc., 144(2022), No. 18, p. 8267. doi: 10.1021/jacs.2c01996
|
[41] |
H.G. Zhou, R.Q. Xia, J. Zheng, D.Q. Yuan, G.H. Ning, and D. Li Acid-triggered interlayer sliding of two-dimensional copper(I)–organic frameworks: more metal sites for catalysis, Chem. Sci., 12(2021), No. 18, p. 6280. doi: 10.1039/D1SC00924A
|
[42] |
L.S. Sun, M. Lu, Z.F. Yang, et al., Nickel glyoximate based metal–covalent organic frameworks for efficient photocatalytic hydrogen evolution, Angew. Chem. Int. Ed., 61(2022), No. 30, art. No. e202204326. doi: 10.1002/anie.202204326
|
[43] |
W.K. Han, H.S. Lu, J.X. Fu, et al., Targeted construction of a three-dimensional metal covalent organic framework with spn topology for photocatalytic hydrogen peroxide production, Chem. Eng. J., 449(2022), art. No. 137802. doi: 10.1016/j.cej.2022.137802
|
[44] |
H.S. Lu, W.K. Han, X.D. Yan, C.J. Chen, T.F. Niu, and Z.G. Gu, A 3D anionic metal covalent organic framework with soc topology built from an octahedral TiIV complex for photocatalytic reactions, Angew. Chem. Int. Ed., 60(2021), No. 33, p. 17881. doi: 10.1002/anie.202102665
|
[45] |
W.T. Xu, X.K. Pei, C.S. Diercks, H. Lyu, Z. Ji, and O.M. Yaghi, A metal–organic framework of organic vertices and polyoxometalate linkers as a solid-state electrolyte, J. Am. Chem. Soc., 141(2019), No. 44, p. 17522. doi: 10.1021/jacs.9b10418
|
[46] |
Y.Z. Liu, Y.H. Ma, Y.B. Zhao, et al., Weaving of organic threads into a crystalline covalent organic framework, Science, 351(2016), No. 6271, p. 365. doi: 10.1126/science.aad4011
|
[47] |
Y.B. Zhao, L. Guo, F. Gándara, et al., A synthetic route for crystals of woven structures, uniform nanocrystals, and thin films of imine covalent organic frameworks, J. Am. Chem. Soc., 139(2017), No. 37, p. 13166. doi: 10.1021/jacs.7b07457
|
[48] |
Y.Z. Liu, Y.H. Ma, J.J. Yang, et al., Molecular weaving of covalent organic frameworks for adaptive guest inclusion, J. Am. Chem. Soc., 140(2018), No. 47, p. 16015. doi: 10.1021/jacs.8b08949
|
[49] |
H.S. Xu, Y. Luo, P.Z. See, et al., Divergent chemistry paths for 3D and 1D metallo-covalent organic frameworks (COFs), Angew. Chem. Int. Ed., 59(2020), No. 28, p. 11527. doi: 10.1002/anie.202002724
|
[50] |
W.K. Han, Y. Liu, X.D. Yan, Y.Q. Jiang, J.W. Zhang, and Z.G. Gu, Integrating light-harvesting ruthenium(II)-based units into three-dimensional metal covalent organic frameworks for photocatalytic hydrogen evolution, Angew. Chem. Int. Ed., 61(2022), No. 40, art. No. e202208791. doi: 10.1002/anie.202208791
|
[51] |
Y. Liu, C.S. Diercks, Y. Ma, et al., 3D covalent organic frameworks of interlocking 1D square ribbons, J. Am. Chem. Soc., 141(2019), No. 1, p. 677. doi: 10.1021/jacs.8b12177
|
[52] |
T.Q. Ma, Y. Zhou, C.S. Diercks, et al., Catenated covalent organic frameworks constructed from polyhedra, Nat. Synth., 2(2023) , p. 286.
|
[53] |
D. Alezi, I. Spanopoulos, C. Tsangarakis, et al., Reticular chemistry at its best: Directed assembly of hexagonal building units into the awaited metal–organic framework with the intricate polybenzene topology, pbz-MOF, J. Am. Chem. Soc., 138(2016), No. 39, p. 12767. doi: 10.1021/jacs.6b08176
|
[54] |
K. Hong, W. Bak, and H. Chun, Robust molecular crystals of titanium(IV)-oxo-carboxylate clusters showing water stability and CO2 sorption capability, Inorg. Chem., 53(2014), No. 14, p. 7288. doi: 10.1021/ic500629y
|
[55] |
J. Zheng, Z. Lu, K. Wu, G.H. Ning, and D. Li, Coinage-metal-based cyclic trinuclear complexes with metal–metal interactions: Theories to experiments and structures to functions, Chem. Rev., 120(2020), No. 17, p. 9675. doi: 10.1021/acs.chemrev.0c00011
|
[56] |
S.I. Vasylevs’kyy, G.A. Senchyk, A.B. Lysenko, et al., 1, 2, 4-triazolyl-carboxylate-based MOFs incorporating triangular Cu(II)-hydroxo clusters: Topological metamorphosis and magnetism, Inorg. Chem., 53(2014), No. 7, p. 3642. doi: 10.1021/ic403148f
|
[57] |
N.A. Zhao, L. Yang, Q.Y. Pan, et al., Step-by-step assembly of metal–organic frameworks from trinuclear Cu3 clusters, Inorg. Chem., 58(2019), No. 1, p. 199. doi: 10.1021/acs.inorgchem.8b02158
|
[58] |
X.H. Kong, K.Q. Hu, Z.W. Huang, et al., Stepwise assembly of a multicomponent heterometallic metal–organic framework via Th6-based metalloligands, Inorg. Chem., 60(2021), No. 19, p. 14535. doi: 10.1021/acs.inorgchem.1c02082
|
[59] |
B.B. Tu, Q.Q. Pang, H.S. Xu, et al., Reversible redox activity in multicomponent metal–organic frameworks constructed from trinuclear copper pyrazolate building blocks, J. Am. Chem. Soc., 139(2017), No. 23, p. 7998. doi: 10.1021/jacs.7b03578
|
[60] |
J.H. Wang, M.A. Li, and D. Li, An exceptionally stable and water-resistant metal–organic framework with hydrophobic nanospaces for extracting aromatic pollutants from water, Chem. Eur. J., 20(2014), No. 38, p. 12004. doi: 10.1002/chem.201403501
|
[61] |
X.Y. Guan, F.Q. Chen, Q.R. Fang, and S.L. Qiu, Design and applications of three dimensional covalent organic frameworks, Chem. Soc. Rev., 49(2020), No. 5, p. 1357. doi: 10.1039/C9CS00911F
|
[62] |
T.Q. Ma, E.A. Kapustin, S.X. Yin, et al., Single-crystal X-ray diffraction structures of covalent organic frameworks, Science, 361(2018), No. 6397, p. 48. doi: 10.1126/science.aat7679
|
[63] |
H. Jiang, D. Alezi, and M. Eddaoudi, A reticular chemistry guide for the design of periodic solids, Nat. Rev. Mater., 6(2021), No. 6, p. 466. doi: 10.1038/s41578-021-00287-y
|
[64] |
M. O'Keeffe and O. Delgado-Friedrichs, Reticular Chemistry Structure Resource (RCSR) [2023-03-15]. http://rcsr.anu.edu.au/nets
|
[65] |
Z.J. Chen, H. Jiang, M.A. Li, M. O’Keeffe, and M. Eddaoudi, Reticular chemistry 3.2: Typical minimal edge-transitive Derived and Related nets for the design and synthesis of metal–organic frameworks, Chem. Rev., 120(2020), No. 16, p. 8039. doi: 10.1021/acs.chemrev.9b00648
|
[66] |
Z.J. Chen, H. Jiang, M. O’Keeffe, and M. Eddaoudi, Minimal edge-transitive nets for the design and construction of metal–organic frameworks, Faraday Discuss., 201(2017), p. 127. doi: 10.1039/C7FD00119C
|
[67] |
J.H. Cavka, S. Jakobsen, U. Olsbye, et al., A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, J. Am. Chem. Soc., 130(2008), No. 42, p. 13850. doi: 10.1021/ja8057953
|
[68] |
D. Beaudoin, T. Maris, and J.D. Wuest, Constructing monocrystalline covalent organic networks by polymerization, Nat. Chem., 5(2013), No. 10, p. 830. doi: 10.1038/nchem.1730
|
[69] |
T. Song, W.L. Tang, C.E. Bao, et al., An fcu Th-MOF constructed from in situ coupling of monovalent ligands, Symmetry, 13(2021), No. 8, art. No. 1332. doi: 10.3390/sym13081332
|
[70] |
T. Song, X. Feng, C.E. Bao, et al., Aquatic arsenic removal with a Zr-MOF constructed via in situ nitroso coupling, Sep. Purif. Technol., 288(2022), art. No. 120700. doi: 10.1016/j.seppur.2022.120700
|
[71] |
K.S. Park, Z. Ni, A.P. Côté, et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proc. Natl. Acad. Sci. U. S. A., 103(2006), No. 27, p. 10186. doi: 10.1073/pnas.0602439103
|
[72] |
A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O’Keeffe, and O.M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks, Acc. Chem. Res., 43(2010), No. 1, p. 58. doi: 10.1021/ar900116g
|
[73] |
Y. Zhou, S.T. Liu, Y.M. Gu, et al., In(III) metal–organic framework incorporated with enzyme-mimicking nickel bis(dithiolene) ligand for highly selective CO2 electroreduction, J. Am. Chem. Soc., 143(2021), No. 35, p. 14071. doi: 10.1021/jacs.1c06797
|
[74] |
N.L. Rosi, J. Kim, M. Eddaoudi, B.L. Chen, M. O'Keeffe, and O.M. Yaghi, Rod packings and metal–organic frameworks constructed from rod-shaped secondary building units, J. Am. Chem. Soc., 127(2005), No. 5, p. 1504. doi: 10.1021/ja045123o
|